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FOCUS-Africa – Full-value chain Optimised Climate User-centric Services for Southern 
Africa – is developing sustainable tailored climate services in the Southern African 
Development Community (SADC) region for four sectors: agriculture and food security, 
water, energy and infrastructure. 
 
It will pilot eight case studies in six countries involving a wide range of end-uses to illustrate 
how the application of new climate forecasts, projections, resources from Copernicus, 
GFCS and other relevant products can maximise socio-economic benefits in the Southern 
Africa region and potentially in the whole of Africa. 
 
Led by WMO, it gathers 14 partners across Africa and Europe jointly committed to addressing the 
recurring sustainability and exploitation challenge of climate services in Africa over a period of 48 
months. 
 
For more information visit: www.focus-africaproject.eu 
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● Executive Summary 

The SADC countries are particularly vulnerable to climate variability, change and extremes. Water 
resources, agriculture, hydropower generation, ecosystems and basic infrastructures are especially 
under stress because of increased frequency and intensity of floods, droughts, and landslides. The 
development of improved climate information and forecasts of decision-relevant parameters is 
essential to address these challenges 

  

FOCUS-Africa’s climate services will be developed by ensuring the full value chain is implemented, 
starting from close involvement of end-users to assess their climate-related challenges and risks 
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(WP2), understanding regional climate processes (WP3), developing methods and tools (WP4), 
creating prototypes of end-user tailored climate services (WP5), assessing their economic value, and 
exploiting results (WP6) and capacity building (WP7). 

This will be demonstrated by piloting eight case studies in six countries involving a wide range of 
fellow-users. The case studies will illustrate how the use of WP3 climate science, forecasts and 
projections can maximize socio-economic benefits in the Southern Africa region and potentially in the 
whole of Africa. 

  

Indeed, WP3 builds up the climate foundation of the project and focuses specifically on advancing the 
underpinning science required to provide robust climate services and development of climate-
integrated applications for the energy, water, infrastructure, and food security sectors. To achieve 
this, WP3 explores the performances of the latest climate projections (Task 3.1, M12) and 
predictability at seasonal forecast time scales s (Task 3.2, M18) as well as analyse the extremes in the 
region (Task 3.3, M24).  

 

In Task 3.2 described in this report, we built up some climate foundation of this project by analysing 
the main drivers of climate variability over the SADC region. This will allow the next task (i.e., Task 4.3) 
developing and adapting the most relevant seasonal forecasts to be used in the case studies for 
specific countries and climate parameters based on our findings. 

 

We showed indeed that SARCOF and SWIOCOF are using a series of predictors over the region for 
seasonal forecasting with ENSO, IOD, SIOD, Benguela Nino demonstrating to drive rainfall variability 
across southern Africa. Current statistical tools have useful predictability usually limited to years with 
strong ENSO signal.  

 

The  evaluations of skill in the AMIP-simulations of inter-annual variability in the Southern Hemisphere 
showed that  a pronounced seasonal cycle in predictive skill exists over the Southern Hemisphere 
continents in the subtropics, with peak skill in summer in association with ENSO forcing. However, the 
seasonal prediction of winter rainfall and underpinning circulation anomalies need to focus on 
improved systems of initialisation and data assimilation, rather on sources of predictability, since for 
these regions the latter is insignificant compared to the dominating role of internal variability. 

 

We then investigated the observed interannual to multi-decadal variability and changes of droughts 
and other environmental conditions that directly affect rainfall, streamflow, and river discharges 
across the Orange River basin as it is the largest river system in southern Africa. This showed that this 
is largely explained by the natural variability throughout the 20th Century. However, the worsening of 
water stress due to loss from surface water, drainage systems, and other covers is likely associated 
with temperature amplification. We also demonstrated that the problems of seasonal forecasting in 
correctly predicting baroclinic activity may be directly related to the low skill values of precipitation 
predictions observed in the seasonal forecast. In addition, in a showcase for Lake Malawi, it was shown 
that low level moisture transport plays an important role in rainfall over the Lake Malawi catchment, 
and its dynamics are linked to seasonal and interannual rainfall variability.  

Going further, we evaluated the prospects of improving seasonal predictions of ECVs in SADC by 
means of the characterization of teleconnection links with large scale patterns like El Niño Southern 
Oscillation (ENSO).It was shown that higher skills could be generated by using estimates from the 
teleconnection indices, especially for precipitation using linear regression models. Indeed, the 
seasonality of precipitation over most of Africa is arguable linked to the migration of the Tropical Rain 
Band that is closely linked to large scale processes such as the Hadley circulation through the ITCZ.  
The Copernicus seasonal forecast models show some potential in predicting the main features of 



D3.1 Climate Projections Analysis over the SADC region 

7 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

variability of this tropical rain band over Africa in key periods of the year well in advance. Finally, in 
another showcase, we characterized the influential large-scale climate drivers on crop production by 
showing that the rainfall season has been shortening and average temperature increasing significantly 
from 1981 to 2020. Interannual yield anomalies are often linked to variations in the large-scale 
systems that control the regional climate with quasi-periodic fluctuations. The results suggest that 
recent large-scale climate trends, attribute to human activity, have a negative impact on the countries 
yield progress.  

 

 

 

● Keywords 

Seasonal forecast, Predictability, South Africa, Climate change and Variability 

 

1 Introduction  

Southern Africa epitomizes the link between climate and the water–energy–food nexus, as multiple 
challenges collide across a very diverse socioeconomic spectrum of countries (Mabhaudhi et al., 2021; 
Siderius et al., 2021). According to the World Bank Classification (see Table 1 below) of the countries 
that comprise SADC (Southern African Development Community); six are defined as low income 
including Malawi, Mozambique, and Tanzania which are the focus of 5 of our project’s case studies. 

 

 

Table 1 – Income group of the countries that comprise SADC 

INCOME GROUP SADC COUNTRY 

                     LOW 

Lesotho 

Malawi 

Mozambique 

Tanzania 

Zambia 

Zimbabwe 

MIDDLE 

LOWER 

Angola 

Botswana 

Namibia 

Swaziland 

UPPER 
Mauritius 

South Africa 

 

Food security is the main sector of interest in our project and agriculture’s contribution to regional 
Gross Domestic Product (GDP) is 17% for the whole SADC region, and up to 28% for the low-income 
countries. At the same time, ca. 75% of the land in SADC is either arid or semi-arid, and agriculture is 
estimated to consume 70% of the renewable water resources of the region (Nhemachena et al., 2020). 
Major water scarcity issues are expected in the SADC because of ongoing exploitation and 
degradation, coupled with increased demand and climate change (IPCC, 2021). With 27 million food 
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insecure people, the 2015/16 El Niño-induced drought provides an example of how increased water 
demand for agriculture can aggravate water, energy, and food insecurity (Nhemachena et al., 2020; 
Kolusu et al., 2019).  

Climate change is expected to impact infrastructures, renewable energy, and agricultural production 
in SADC in multiple ways. Indeed, approximately 30% of the region is critically exposed to a variety of 
climate hazards such as drought, flood, climate variability and high temperatures (Ramirez-Villegas et 
al., 2021). The SADC countries are particularly vulnerable to climate variability, change and extremes: 
particularly water resources, agriculture, hydropower generation, ecosystems and basic 
infrastructures are especially under stress because of increased frequency and intensity of floods, 
droughts, and landslides. The 2015/16 drought, one of the most severe on record, contributed to over 
40 million people to be food insecure, and dam water levels to be reduced, leading to intermittent 
power outages in most countries in the region (Conway et al., 2017). Climate change is also projected 
to reduce the amount of suitable land for cropping and crop, pasture, livestock productivity (Pequeno 
et al., 2021, Ekine-Dzivenu et al., 2020) as well as to double the risk of drought such as the 2015/16 
event occurring (Kolusu et al., 2019). Decreased suitable land for cropping and reduced crop and 
livestock productivity would exacerbate water scarcity and insecurity, and decrease national self-
sufficiency ratios, and impact food availability locally, with devastating effects on food insecurity in 
the region. Water, energy, and food are thus inextricably linked across multiple scales in SADC and are 
heavily interdependent.  

 

Therefore, addressing these existing and emerging infrastructure-water-energy-food issues requires 
a better understanding and characterization of the predictability of available seasonal and decadal 
forecasts. This is the objective of Task 3.2 described in this report. We are building up the climate 
foundation of this project by analysing the most recent climate data available to investigate the main 
drivers of climate variability over the SADC region. This will then enable in the next task (i.e., Task 4.3) 
to develop and adapt the most relevant seasonal forecasts to be used in the case studies for specific 
countries and climate parameters. 

In this report, Section 2 describes the status of decadal forecasting in SADC. Section 3 provides an 
overview of the current predictors used in operational seasonal forecasting in the region. Section 4 
investigates the main drivers of climate variability across the region with a showcase for Malawi. 
Finally, Section 5 explores the main large-scale processes linked with rainfall onset, crop yield 
variations and other variables across the region with another illustrative showcase for Mozambique. 

 

 
 

 

2 Review of the status of decadal forecasting 

Climate variability at a decadal or longer time scale is a key issue for the society to mitigate climate-

related risks and establish long-term adaptation plans for sectors such as agriculture, fisheries, water 

management and city design (Morioka et al., 2015). To develop such plans, better understanding of 

the drivers of natural variability and the sources of predictability at these timescales are essential. 

Merryfield et al. (2020) synthesized the current understanding of these drivers and sources of 

predictability, with a focus on the seasonal to decadal (S2D) time scales and timescales interactions. 

Lüdecke et al. (2021) assessed six potential climatic drivers of rainfall natural variability in the African 
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continent linked to teleconnections in the Atlantic, Pacific and Indian oceans. As rainfall in African 

shows strong inter-annual fluctuations, with recurring wet and dry periods (Dieppois et al., 2016), it is 

essential analysis of its variability is better understood for better planning in relation to droughts and 

floods. Looking at different climate scenarios, (Lim Kam Sian et al., 2021) shows that precipitation in 

the wet and dry seasons shows an initial increase during the near future (2015–2044) over western 

and eastern Southern Africa, followed by a reduction in precipitation during the far future. 

 

With the deployment of operational centres around the globe and continued advances in climate 

modelling, in combination with user demand for climate services, predictions of the near-term climate 

have become more robust (O'Kane et a., 2022). Decadal prediction systems have shown levels of skill 

that are comparable to predictions in operational seasonal forecasting (Kushnir et al., 2019), 

particularly for surface air temperature and to precipitation (Doblas-Reyes et al., 2013; Smith et al., 

2019). In addition to these, predictions at this timescale also provide skilful information for the 

frequency of extreme events such as heatwaves and tropical storms (Caron et al., 2018; Eade et al., 

2012). Of course, the main difference between the seasonal and decadal predictions is in the temporal 

resolution which would influence the applicability of such products depending on the needs of 

different sectors. As the skill levels of near-term climate predictions indicate, there is considerable 

potential for several sectors to benefit from such predictions. 

 

The agricultural sector is largely affected by climate variability and particularly by climate extremes 

(e.g., droughts, flooding and heatwaves). Chatzopoulos et al. (2020) shows that regional climate 

extremes may have significant economic impacts on agricultural commodity markets. Skilful and 

reliable predictions are essential for planning given that unfavourable conditions such as heat or water 

stress affect both grain yield and quality, with large impacts on food security in many regions of the 

world. Landman et al. (2017) developed a procedure that can provide some guidance to policy makers 

responsible for action plans to mitigate and adapt to the impacts of increasing temperatures on dry 

land maize yield. Solaraju-Murali et al. (2021) showed that predictions on multi-annual timescales 

support decision making in the wheat sector have improved but efforts are still needed to convert 

those available climate predictions into information that can be understood and used by stakeholders 

involved in that sector. The interaction of climate scientists with users and policy makers to 

understand the needs of information and some existing obstacles in law and regulations is essential. 

 

To effectively leverage the utility of decadal forecasts, there is the crucial task of communicating 

prediction and uncertainty information in an appropriate form to meet the needs of the end user. One 

issue, to keep in mind, is that the information that can be extracted from forecasts and predictions 

can offer a range of benefits. However, these are not all equally distributed or weighted. As with 

seasonal forecasts, some of the information may be detrimental or disadvantageous to some groups 

and providers should consider the ethical aspects of forecast delivery (Hobday et al., 2019). For 

example, multi-year drought prediction may increase insurance costs to individual farmers 

(disadvantage) while reducing losses to insurance providers (advantage).  

 

Kushnir et al. (2019) also point out that as the climate changes, there is great need for updated 

information, particularly in relation to the risk of extreme and unprecedented events and their impacts 
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on several economic sectors. Annual–decadal climate predictions can offer early warning of where the 

risk of extreme events, due to both climate change and natural variability, is higher. Decadal prediction 

is an essential component of the Global Framework for Climate Services (GFCS) as this timeframe of 

up to 10 years is a key for decision makers to develop plans, particularly for infrastructure. There will 

be an increase in demand for decadal predictions, particularly with further co-development of specific 

products based on user feedback. Outputs of operational decadal climate prediction systems are now 

routinely available, with multiple centres now producing operational near-term climate predictions 

and making it available via the WMO Lead Centre for Annual-to-Decadal Climate Prediction 

(www.wmolc-adcp.org ) and since 2020, an annual synthesis has been provided via the WMO Global 

Annual to Decadal Climate Update. Hermanson et al. (2022) shows the results of the latest annual 

synthesis for the period 2021-2025. The ensemble mean predictions of precipitation captured the 

correct sign of anomalies in several regions including wetter conditions across the Sahel, India and 

East Africa, and drier conditions in South America and southern Africa. 

 

 

3 Review of the current SARCOF and SWIOCOF predictors  

Background 
Reliable seasonal climate forecasting, particularly for the rainy season for Southern Africa has the 
potential to be of great benefit to users.  The 2015/16 drought impacts included up to 40% inflation 
in agriculture commodity markets and some southern Africa countries loosing up to 50% of their 
normal hydropower capacity. Anticipated knowledge of temperature and rainfall variability can assist 
planning, management, and mitigation decisions for users from many sectors of the economy 
(Johnston et al. 2004).  However, useful seasonal forecast, would require ease of interpretation, 
acceptable accuracy as well as efficient dissemination. Southern Africa is a relatively dry area and 
depends on rainfall for farming and hydropower. Prior knowledge of precipitation patterns can lead 
to improvement in food security, more profits for farmers, assistance with planning of planting, 
fertilisation, and harvesting. Reduction in agriculture losses, increase in crop productivity and 
profitability are expected outcomes of reliable seasonal forecasts interpretation, communication, and 
use.  Thus, we focus in this section on the predictors used in operational seasonal forecasting for 
southern Africa.  

The Southern Africa region had been using the Nino Sea Surface Temperatures (SSTs) as the main 
predictor for several years until the evolution of tools such as ClimLab2000, Climate Predictability Tool 
(CPT), SWIOFORDS, GeoCOF and currently the Climate Forecasting Tool (CFT) which has been 
upgraded into a Climate Forecasting Toolbox (CFTx) with the inclusion of a clustering module in 
January 2022. The evolution of tools enhanced the ingestion of a multiple array of predictors including 
Mean Sea Level Pressure (MSLP), lower and middle troposphere Geopotential height, SSTs, and 
related indices such as Equatorial Indian Ocean Dipole (IOD) and Sub tropical Indian Ocean dipole 
(SIOD). Horizontal winds are also included in the SWIOFORDS tool but not extensively explored yet in 
the Southern Africa Regional Climate Outlook Forum (SARCOF) processes. 

Figure 1 provides the key SST areas (SSTAs) known to influence African climate including SADC regions’ 
precipitation variability at seasonal to interannual and decadal timescales. Known SSTAs patterns of 
interest that have well known and often direct influence on the SADC region rainfall performance are 
Nino 3.4, SWIO (South-West Indian Ocean), Benguela Nino (BN), Subtropical Indian Ocean Dipole 
Mode (SIOD) and Indian Ocean Dipole (IOD) basins.  
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Figure 1: Major Ocean basins that influence the African continental rainfall.  BN, SWIO, SIOD, 
IOD, TAS, AMO and NINO are key SST areas influencing rainfall variability in southern Africa 

 

3.1 El Nino Southern Oscillation 

ENSO is characterized by positive (El Nino) and negative (La Nina) Sea Surface Temperature Anomalies 
(SSTAs) in the equatorial pacific. This phenomenon influences the global climate with a frequency 
between 2 and 7 years. El Niño-Southern Oscillation phases have a regionally unique, although 
generally predictable influence on weather. El Niño-Southern Oscillation phases influence the number 
of typical summer weather systems and where they form. That in turn influences rainfall and 
temperature patterns over the globe including the Southern Africa region. Wetter and cooler 
conditions occur during La Niña phases because tropical temperate troughs, large rain-producing 
cloud bands form more frequently and move eastward over the sub-continent. Tropical lows form 
more frequently and are located further south. Conversely, high-pressure systems which promote hot, 
dry conditions are reduced in intensity and are located further south. The opposite occurs during El 
Niño phases. La Nina conditions have persisted since June 2020 leading to enhanced rainfall activity 
in the sub-continent as can be evidenced on the November-December 2020-January 2021 observed 
rainfall tercile map (Figure 2). 

Reduced precipitation over most of the Southern Africa sub-continent is associated with El Niño events 
( i.e. 2015/16 southern summer), with warm SST across the east and central Pacific Ocean and warmer 
than average SST over the Indian Ocean. These regional precipitation reductions are forced primarily 
by large-scale mid-tropospheric subsidence associated with anticyclonic circulation in the upper 
troposphere during the first half of the rainy season over southern Africa.  

La Niña events, with cool SST anomalies over the central Pacific and warm SST over the west Pacific 
and adjacent Indian Ocean, are associated with precipitation increases over Southern Africa during 
the first half of the rainy season. The regional precipitation increases are forced primarily by lower 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030803
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tropospheric cyclonic circulation, resulting in mid-tropospheric ascent and an increased flux of 
moisture into the region. 

 

 

Figure 2: Observed rainfall tercile map for November-December 2020 to January 2021 (NDJ) 

during a La Nina phase 

 

3.2 Indian Ocean Dipole 

The IOD is an irregular oscillation of sea surface temperatures and related atmospheric circulation in 
the Indian Ocean. The IOD has positive and negative phases, which are defined by opposing sea 
surface temperature anomalies in the western and eastern tropical Indian Ocean (Figure 3 and Figure 
4). Key characteristics of IOD events include: 

● Events occur irregularly and vary in strength and duration, 
● Positive and negative IOD events often coincide with El Niño and La Niña events, 

respectively, but sometimes occur independently, 
● Simultaneous positive IOD and El Niño, and negative IOD and La Niña, events may enhance 

precipitation deficits or excess respectively. 
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Figure 3: Indian Ocean Dipole years since 1960 (source: Bureau of Meteorology-Australia) 

 

Figure 4: Indian dipole years since 1960 (source: BoM) 

The IOD is related to changes in atmospheric and oceanic circulation in and around the Indian Ocean 
basin. While precipitation outcomes differ from one IOD event to the next, consistent patterns across 
past events provide a baseline for prediction. Corresponding to the seasonality of events, the IOD is 
related to wet and dry conditions over Africa during October-December. Over the African continent, 
the IOD is related to wet and dry conditions (depending on the phase) along the Indian Ocean Rim, 
extending from Somalia to Mozambique, during September-December.  

3.3 Subtropical Indian Ocean Dipole Mode 

The SIOD is featured by the oscillation of SST in which the southwest Indian Ocean i.e. south of 
Madagascar is warmer/cooler and the opposite cooler/warmer in the eastern part i.e. off Australia 
(Figure 5). It was first identified in the studies of the relationship between the SST anomaly and the 
south-central Africa rainfall anomaly; the existence of such a dipole was identified from both 
observational studies and model simulations. SIOD usually influences precipitation mostly during the 
second half of southern Africa and IOC regions rainfall season (December to April). The evolution  
process of the SIOD event is highly affected by the position of the subtropical high of the Mascarenes. 

Positive phase of SIOD is characterized by warmer-than-normal sea surface temperature in the south-
western part, south of Madagascar, and colder-than-normal sea surface temperature off Australia, 
causing above-than-normal precipitation in many regions over south and central Africa. The negative 
phase of the SIOD is featured by the opposite conditions, with warmer SSTs in the eastern part, and 
cooler SSTs over the south-western part.  Positive events tend to be associated with reduced TC 
activity. Positive events are generally associated with dry mid troposphere conditions and cooler than 
usual SST over the central southern Indian Ocean. When SST is warm to the south of Madagascar and 
cool off Western Australia, increases southern summer rains occur over large parts of southern Africa. 
Models results suggest that this SST pattern leads to increases rainfall via enhanced moisture 
convergence or the region (Reason C.J.C , 2001).   
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Figure 5: SST anomalies pattern during the strong positive SIOD event in 2016/17. A positive 
(negative event is associated with warmer(cooler) waters south of the Mascarenes islands and 

cooler (warmer) near Australia and the aster subtropical southern Indian ocean. 

3.4 Benguela Nino 

The south-eastern tropical Atlantic Ocean hosts the Angola Benguela upwelling system which is one 
of the most productive marine ecosystems in the world (Chavez and Messié, 2009; Jarre et al., 2015) 
fuelled by the upwelling of nutrient-rich waters ( see Figure 1, BN box). 
Benguela Ninos warm SSTs off the coasts of Angola and Namibia are off associated with above average 
precipitation and floods in these countries with strongly enhanced rainfall in the Namib desert.  
Moisture flux and rainfall anomalies over southern Africa that have occurred during strong warm SST 
events off the coast of Angola since 1950 typically occur during February-April (FMA), the main rainy 
season for Angola/northern Namibia (Figure 6). Eleven of these events have occurred in the 60-year 
period since 1950 and each experiences increased rainfall somewhere in coastal Angola, and in 10 
cases, somewhere in northern Namibia. Droughts are associated with Benguela Nina.  
The upwelling system is marked by the presence of a sharp meridional temperature gradient called 
the Angola Benguela front (ABF) located in the region between 15°S and 18°S which separates the 
warm tropical waters in the north to the cold upwelled waters in the south. The region exhibits high 
sea surface temperature (SST) variability at a wide range of frequencies varying from sub-monthly to 
decadal timescales. Inter-annual timescale are marked by the occurrence of extreme warm events of 
the so-called Benguela Niños and their cold counterparts, the Benguela Niñas ( Florenchie et al., 2004; 
Koseki and Imbol Koungue, 2020). Those interannual warm and cold events usually peak in boreal 
spring when the SSTs are climatologically high, and the intertropical convergence zone (ITCZ) reaches 
its southernmost position. During a Benguela Niño (Niña) event, the SSTs can be up to 3°C higher 
(lower) than the climatology in the Angola Benguela area (ABA, 8°E – coast; 10–20°S). 
 

 

https://www.frontiersin.org/articles/10.3389/fmars.2021.800103/full#B12
https://www.frontiersin.org/articles/10.3389/fmars.2021.800103/full#B31
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Figure 6: Left: mean February to April SSTAs for 1984 (a); 1988(b); 1995(g); and 2001(j) 
isocontour at 0.5°C , 1.5°cC and 2.5°C. Middle: mean February to April  integrated moisture flux 
anomalies from surface to 300hPafor the same years in g/kg./s. Right: mean February to April 

rain rate normalized for the same years. 

 

3.5 Predictors 

The SADC RCOF uses similar predictors as the SWIO region including Mean Sea Level Pressure (MSLP) 
and Sea Surface Temperatures (SSTs) related to ENSO, IOD, SIOD, but in addition to these two common 
predictors the SADC-RCOF uses geopotential data at 850 and 500hpa, with zonal wind fields at 850, 
500 and 200 hPa. Because of teleconnections linking SSTs on the ENSO, IOD and IOD boxes and 
regional circulations patterns, it is likely that some circulation patterns related predictors are 
correlated with SSTs and therefore provide little additional information on the forecast performance. 
Upcoming efforts may assess predictability of statistical tools built with these predictors and filter out 
those with limited added value.  

As shown in Table 2, these predictors are mostly available from the International Research Institute 
(IRI) an initiative initially established as a cooperative agreement between NOAA's Climate Program 
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Office and Columbia University. For the Southern Africa Regional Climate Outlook Forum (SARCOF) 
forecast generation process, IRI is the main source of observed and forecasted predictor dataset for 
both the CPT and CFT tools. While the SWIOCOF process uses mostly forecasted predictors obtained 
from three Global Producing Centres (GPCs) namely, the Meteo France S8 model outputs, ECMWF and 
NCEP. The climate predictability tool (CPT) has three modes by which climate forecast is produced, 
namely, Canonical Correlation Analysis (CCA), Principal Component Regression (PCR) and Multiple 
Linear Regression (MLR).  

Table 2: SADC RCOF predictor data and sources 

 Predictor Source Months Statistical 
Forecasting 
Tool(s) 

1 Extended Reconstructed Sea 
Surface Temperatures (ERSSTs) 

NOAA NCDC ERSST 
version5 sst through 
IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

2 Mean Sea Level Pressure (MSLP) NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic MSL 
pressure through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

3 Geopotential Heights Re-analysis 
at 850hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level phi through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

4 Geopotential Heights Re-analysis 
at 500hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level phi through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

5 Geopotential Heights Re-analysis 
at 200hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level phi through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

6 Zonal (U) Winds Re-analysis at 
850hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level u through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

7 Zonal (U) Winds Re-analysis at 
500hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level u through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

8 Zonal (U) Winds Re-analysis at 
200hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level u through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

9 Meridional (V) Winds Re-analysis 
at 850hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level v through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

10 Meridional (V) Winds Re-analysis 
at 500hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level v through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

11 Meridional (V) Winds Re-analysis 
at 200hpa 

NOAA NCEP-NCAR 
CDAS-1 MONTHLY 
Intrinsic Pressure 
Level v through IRI 

July (main COF) 
and December 
(Update COF) 

CFT and CPT 

12 ENSO Indices Indices nino 
EXTENDED NINO34 
through IRI and from 
Tokyo Climate Center 
(TCC) 

July (main COF) 
and December 
(Update COF) 

CFT 
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13 IOD Indices Tokyo Climate Center 
(TCC) 

July (main COF) 
and December 
(Update COF) 

CFT 

 

Summary 

A series of predictors have been tried over the region for seasonal forecasting. Over the years, ENSO, 
IOD, SIOD, Benguela Nino have been demonstrated to drive rainfall variability across southern Africa. 
Current statistical tools have useful predictability usually limited to years with strong ENSO signal. 
Statistical tools available carry quite well the ENSO signal and perform better in the ENSO years.  

 

 

4 Analysis of the drivers of climate variability across SADC 

Changes in climate patterns may alter the world’s terrestrial hydrological systems, strongly influencing 

water resources availability. They may directly impact natural ecosystems along with critical 

socioeconomic sectors such as water supply, energy, crop production, animal raising, and fishery 

(Dore, 2005). Managing water resources at local and regional scales under changing climate is a major 

challenge faced by societies today. Although the trajectory of human-related aspects of future 

atmospheric greenhouse gas emissions and the climate projections’ uncertainty remains high, finding 

a beneficial solution to the interrelated problems of population growth and global warming is one of 

the great challenges of the 21st century (von Storch et al., 2012; O’Neill et al., 2017).  An understanding 

of the extent of weather and climate variability-related extreme events on the one hand, and the risks 

associated with the projection of future climate, are key in informing all national development plans 

and priorities towards a climate change resilient state (Niang et al., 2014).  

Climate change is a complex and cross-cutting problem that needs an integrated and transformative 

systems approach to respond to the challenge (Mpandeli et al., 2018). In the context of the water-

energy-food nexus, the climate system forms the cornerstone of the full value-chain of climate 

services (Sanders, 2015). The latest Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 

2018) specifies Southern Africa as one of the global climate-change-induced hotspots that occur 

through interactions across the physical climate system, ecosystems, and livelihoods. Along with the 

other such defined global hotspots, the region focuses the report on the extent to which risks can be 

avoided or reduced by achieving the 1.5°C global warming goal, as opposed to the 2°C goals of IPCC’s 

5th Assessment Report (AR5). Also, subtropical Southern Africa is projected to be a climate change 

hotspot both in terms of heat extremes and drying with rapidly rising temperatures at approximately 

twice the global rate (e.g., Engelbrecht et al., 2015). 

Furthermore, in southern Africa, seasonal prediction is most skilful in the austral summer, with 

predictability largely attributed to the ENSO teleconnection to southern Africa (Cook, 2001). El Niño 

events are associated with below-normal rainfall over southern Africa in summer, with East Africa 

typically experiencing above-normal rainfall during the same time. La Niña events typically bring above 

normal rainfall to southern Africa and below normal rainfall to East Africa during summer (Indeje et 

al., 2020). Investigations of the relatively high levels of skill in forecasting summer rainfall anomalies 

over southern Africa have revealed the highest skill levels for seasons of La Niña forcing; skill is also 

high for seasons with El Niño forcing, but only marginal when conditions in the Pacific Ocean are 

neutral (Landman and Beraki, 2012). Forecast still is substantially lower for spring, autumn and winter. 

One reason for this apparent ‘seasonal cycle’ in predictability is that the ENSO signal is strongest in 
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summer, and often absent or weak during the austral winter. There is also evidence of the Southern 

Annular Mode (SAM) impacting on inter-annual rainfall over southern Africa. The positive mode of 

SAM is associated with above-normal summer rainfall over southern Africa in summer (Gillett et al., 

2006), as well as to the more frequent landfall of tropical cyclones over Mozambique and northeastern 

South Africa (Malherbe et al., 2014).  

An open question in southern African climate science is whether the relatively low skill in predicting 

seasonal rainfall anomalies in winter and the transition seasons can be improved. Such improvements 

may follow from model development, including improved initialisation and assimilation systems that 

better incorporate information of the ocean state, or long and planetary waves, which can translate 

to forecast skill at seasonal time scales. Also important is exploring whether there are forms of 

external forcing, not sufficiently represented in climate models, that if included can substantially 

improve forecast skill. Antarctic stratospheric ozone is a primary example in this regard. The 

importance of its concentrations for climate variability in the Southern Hemisphere troposphere is a 

relevant recent discovery (Thompson et al., 2011), and its implications to southern African inter-

annual variability remains largely unexplored (Engelbrecht et al., 2015). 

4.1 AMIP simulations analysis 

Background 

A relatively unexplored data set that forms part of the larger Coupled Model Intercomparison Project 
Phase Six (CMIP6) archive, and that may help to explore this open question, is that of the Atmospheric 
Model Intercomparison Project (AMIP). These simulations are constructed using global atmospheric 
models forced at their lower boundaries with observed sea-surface temperature and sea-ice 
reconstructions. Radiative forcing is in the form of observed greenhouse gas and ozone 
concentrations, as well as aerosol emissions, for the period 1979-2014 (the same forcings used in the 
‘historical’ simulations of CMIP6). To the extent that atmospheric inter-annual variability is the 
response to lower-boundary and radiative forcing, AMIP simulations may be regarded as an important 
measure of seasonal or inter-annual predictability. To some extent, since the boundary forcing (e.g. 
ENSO forcing and anomalous Antarctic stratospheric ozone) in AMIP simulations is ‘perfect’, the 
representation of inter-annual variability in the simulations may be regarded as an upper boundary 
for seasonal forecast skill. That is, AMIP simulations include all the potentials ‘sources of predictability’ 
that may translate to seasonal forecast skill over southern Africa (or globally, for that matter). 
However, AMIP simulations are initialised only once, at the beginning of 1979, rather than for each 
season of every year at different lead-times (as in an operational seasonal forecast system or when 
generating seasonal hindcasts). This implies that AMIP simulations do not utilize knowledge of the 
initial state of planetary scale atmospheric flow (long waves) that may provide seasonal forecast skill, 
at least for the first 30 - 40 days of a seasonal forecast (Engelbrecht et al., 2021).  

In this section, the predictive skill of a multi-model ensemble of AMIP simulations is analysed in the 
context of inter-annual variability in the Southern Hemisphere. The purpose of the analysis is to obtain 
a measure of the upper boundary of predictive skill, that is of the fundamental predictability that exists 
in the region as a consequence of all available sources of predictability that exist in the form of lower 
boundary and radiative forcing. 

 

Methodology and data  

The CMIP6 AMIP simulations make use of the same set of radiative forcings used to drive the more 
widely used set of ‘historical’ simulations in CMIP6. These include the historically observed or 
reconstructed greenhouse gas (including CO2 and methane) and ozone (tropospheric and 
stratospheric) concentrations, aerosol emissions, and solar radiation. Whereas the CMIP6 simulations 
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span the period 1850-2014 and rely on the use of coupled global climate models (CGCMs), the AMIP 
simulations were designed to span the period 1979-2014 and rely on the use of atmospheric global 
circulation models (AGCMs). This is towards making use of the satellite era to provide to the AMIP 
experimental design the most realistic set of lower boundary conditions in the form of observed 
monthly sea-surface temperatures (SSTs) and sea-ice concentrations (SICs) (Xiang et al., 2017). The 
CMIP6 ‘historical’ simulations, on the other hand, are constructed using ‘free-running’ CGCMs, 
without any lower-boundary forcing being applied.   

In the analysis that follows, we make use mainly of a multi-model ensemble of AMIP simulations, 
constructed by using a single ensemble member of 41 AGCMs that participated in the AMIP 
experiment of CMIP6. A minority of participating models also contributed large initial-condition (IC) 
based ensembles to AMIP, and we also analyse one of these, namely an 18-member IC-ensemble 
generated by the GISS-E2-G-1 model. We finally, for comparison purposes, make use of a single 
ensemble member of the GISS-E2-G1 ensemble, to place in perspective the performance of the 
individual ensemble member in representing inter-annual variability as compared to that of the IC-
based ensemble average. In combination the three sets of simulations analysed provide insight into 
the predictability that may be derived purely from ‘perfect’ boundary forcing, that is, from including 
all possible sources of predictability in the simulations. The IC-based ensemble additionally explores 
the role of model internal-variability on predictive skill. The predictive skill analysis is undertaken for 
the variables of 850 hPa height, representing low-level circulation. By considering model performance 
for this fundamental variable, we avoid the further uncertainties that result in simulating rainfall, for 
example, from the parameterisation of cumulus convection.   As a verification data set, we make use 
of NOAA-CIRES-DOE reanalysis v3 (Slivinski et al., 2019), as a representation of the historical inter-
annual variability in low-level circulation over the period 1979-2014. 

The analysis is undertaken separately for the seasons DJF, MAM, JJA and SON. The Spearman Rank 
Correlation Coefficient (SR) is used to calculate correspondence between the various simulations and 
the reanalysis, to determine the degree of correspondence between the ‘observed’ and ‘simulated’ 
inter-annual variability. For DJF, 35 ‘cases’ have been simulated over the 1979-2015 period, which 
yields that an SR of 0.283 or higher as statistically significant at the 95% level. For the remaining 
seasons there are 36 simulation years to consider, yielding a SR of 0.279 or higher as statistical 
significant at the 95% level. All data sets were interpolated onto a 1° latitude-longitude grid in order 
for the calculation of the SR at the grid-point level across the Southern Hemisphere. 

 

Analysis 

The spatial variation of the SR across the SH in terms of representing inter-annual variability in summer 
low-level circulation is shown in Figure 7. High correlation coefficients occur in the central and eastern 
parts of the tropical Pacific Ocean, which is indicative of the strong atmospheric response to the SST 
anomalies associated with ENSO. Correlations are also high across the tropical and subtropical Atlantic 
Ocean, as well as over the eastern tropical Indian Oceans. Correlations are relatively low, but still 
statistically significant, over the tropical western Pacific and western Indian Oceans. Across southern 
Africa, correlation coefficients are high and statistically significant for DJF. This suggests that strong 
control is exerted over the inter-annual variability in low-level circulation by the combination of lower-
boundary and radiative forcing. Previous research (Landman and Beraki, 2012) have indicated that 
this forcing first and foremost derives from El Niño and La Niña events in the Pacific Ocean. There is 
an east-west gradient in the strength of the correlation across southern Africa (relatively low 
coefficients in the east, and relatively high coefficients in the west). To the south of southern Africa, 
and across the Southern Ocean, correlation coefficients are relatively low over the Southern Ocean. 
This includes regions within the westerly wind regime where the coefficients are not statistically 
significant, and in some cases are negative. This is a staggering and potentially highly significant result: 
there are portions of the westerly wind regime in the Southern Hemisphere where the inter-annual 
variability in low-level circulation is not responsive to either lower boundary or radiative forcing. These 
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regions of ‘unpredictability’ reach as far north as the southern tip of South America and south-eastern 
Australia in summer. 

 

Figure 7: Spearman Rank Correlation Coefficients for summer (DJF) for 1979/80 to 2013/14 
depicting the ability of the AMIP multi-model ensemble average to represent inter-annual 

variability in low-level circulation (850 hPa) in the Southern Hemisphere. Correlation coefficients 
of 0.283 or larger (yellow to red shaded) are statistically significant (α=0.05). 

 

The SR values depicting the ability of the AMIP simulations to depict inter-annual variability in March 
are shown in Figure 8. The same pattern of high correlation coefficients over the tropical oceans found 
for summer persists in autumn, and as in summer, extend to the tropical continental areas. Over 
southern Africa the SR values are substantially lower than for summer, but still statistically significant. 
Over the Southern Ocean, the area of negative correlations are substantially larger and displaced 
northwards, likely in response to the more intense and northward displaced westerlies in autumn. The 
negative correlations reach as far north as the southern tip of South America, south-eastern Australia 
and the southwestern Cape and Cape south coast regions of South Africa. These findings suggest that 
even in the presence of perfect lower boundary and radiative forcing, autumn inter-annual variability 
in low-level circulation is fundamentally not predictable over vast regions of the Southern Ocean and 
the southern extremities of the Southern Hemisphere continents, at least not in the context of AMIP 
simulations.  



D3.1 Climate Projections Analysis over the SADC region 

21 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

 

Figure 8: Spearman Rank Correlation Coefficients for autumn (MAM) for 1979 to 2014 depicting the 
ability of the AMIP multi-model ensemble average to represent inter-annual variability in low-level 
circulation (850 hPa) in the Southern Hemisphere. Correlation coefficients of 0.279 or larger (yellow 
to red shaded) are statistically significant (α=0.05). 

During winter there is a further northward displacement of areas exhibiting statistically insignificant 
correlations across southern Africa, as the westerlies assume their most equatorward location (Figure 
9). This result puts in doubt whether inter-annual low-level circulation (and thus rainfall) is at a 
fundamental level predictable over southern Africa in winter. That is, even in the presence of all known 
sources of predictability, observed inter-annual variability is not represented in the simulations. The 
results implies that the best prospects for skilful predictions of winter rainfall in southern Africa is in 
large IC-ensembles initialised using information of the planetary-scale flow. Across the Southern 
Hemisphere tropics, the SR values are high and statistically significant in winter. Over the tropical 
western Indian Ocean, and tropical western Pacific Ocean, correlations are substantially higher in 
winter compared to summer and autumn. 

During autumn, SR values remain statistically insignificant over the southwestern Cape of South Africa, 
south-eastern Australia, and the southern tip of South America (Figure 10). Correlations are 
statistically significant across the Southern Hemisphere subtropics, but with relatively low values over 
the western Indian Ocean, and the western Pacific Ocean, like in spring and summer. 
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Figure 9: Spearman Rank Correlation Coefficients for winter (JJA) for 1979 to 2014 depicting the 
ability of the AMIP multi-model ensemble average to represent inter-annual variability in low-

level circulation (850 hPa) in the Southern Hemisphere. Correlation coefficients of 0.283 or larger 
(yellow to red shaded) are statistically significant (α=0.05). 
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Figure 10: Spearman Rank Correlation Coefficients for spring (SON) for 1979 to 2014 depicting the 
ability of the AMIP multi-model ensemble average to represent inter-annual variability in low-level 
circulation (850 hPa) in the Southern Hemisphere. Correlation coefficients of 0.283 or larger (yellow 
to red shaded) are statistically significant (α=0.05). 

 

For summer, the skill of an IC-based ensemble average of simulations is very similar to that of the 
multi-model ensemble, in terms of representing observed inter-annual variability (Figure 11). A 
single ensemble member still provides a skilful result, which in facts implies that the control of 
lower-boundary and radiative forcing over low-level circulation over southern Africa is so strong that 
it is in fact deterministically predictable. The lower SR values for the case of a single ensemble 
member, relative to that of the corresponding IC-ensemble average does point, nevertheless, to the 
role of internal-variability in the model simulations, and the need to use an ensemble average for 
the dominant boundary forcing signal to be captured. 



D3.1 Climate Projections Analysis over the SADC region 

24 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

 

Figure 11: Spearman Rank Correlation Coefficients for summer (DJF) for 1979/80 to 2013/14 over 
southern Africa depicting the representation of inter-annual variability in low-level circulation for 
the a) 41- model ensemble average; b) 18-member initial condition ensemble of the GISS-E2-G-1 
model and c) a single ensemble member from the GISS-E2-G-1 ensemble. Correlation coefficients of 
0.283 or larger (yellow to red shaded) are statistically significant (α=0.05). 

 

 

Figure 12: Spearman Rank Correlation Coefficients for winter (JJA) for 1979 to 2014 over southern 
Africa depicting the representation of inter-annual variability in low-level circulation for the a) 41- 
model ensemble average; b) 18-member initial condition ensemble of the GISS-E2-G-1 model and c) 
a single ensemble member from the GISS-E2-G-1 ensemble. Correlation coefficients of 0.279 or 
larger (yellow to red shaded) are statistically significant (α=0.05). 
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For the case of winter (Figure 12), behaviour is rather different. The IC-ensemble produces 
substantially lower SR values than the multi-model ensemble, suggesting the importance of the 
response of different models to the lower boundary and radiative forcing in terms of representing 
inter-annual variability of winter circulation, as opposed to hat of a single model (or at least the 
specific model used here). The single ensemble member verified, like the IC-based ensemble 
average, produces statistically insignificant and/or negative correlations across southern Africa, 
clearly indicating the inability of the simulations to represent winter inter-annual variability over 
southern Africa. For the multi-model ensemble, however, such skill does exist over the northern 
parts of the domain. 

We finally consider the zonally averaged SR values across the Southern Hemisphere, for the cases of 
summer (black dots) and winter (green dots; Figure 13). Consistent with the spatial maps of SR 
values in Figure 7 and Figure 8, correlations are generally higher for summer as opposed to winter 
across the Southern Hemisphere. Moreover, correlations are highest in the tropics and decrease 
towards the mid-latitudes. Over the high-latitudes towards Antarctica, correlations are relatively 
high for summer as opposed to winter, suggesting a signal from radiative and lower-boundary 
forcing in this region in summer. 

 

Figure 13: Zonally averaged Spearman Rank Correlation Coefficients in representing summer (DJF; 
black dots) and winter (JJA, green dots) inter-annual variability in the AMIP multi-model ensemble 

average of low-level circulation. 

 

Summary 

The resulting evaluations of skill in the AMIP-simulations of inter-annual variability in the Southern 
Hemisphere confirm the results from operational seasonal forecasting, namely that a pronounced 
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seasonal cycle in predictive skill exists over the Southern Hemisphere continents in the subtropics, 
with peak skill in summer in association with ENSO forcing. However, in spring and autumn and 
particularly in winter, circulation patterns of lower predictability originating from the Southern Ocean 
impact on atmospheric variability over the subtropical landmasses. Since these circulation patterns 
seem to be relatively unconstrained by lower boundary and atmospheric radiative forcing, it implies 
that predictability in the subtropics may be constrained in winter and the transition seasons by the 
relatively less predictable mid- and high-latitude circulation regimes of the Southern Hemisphere. This 
is a finding with pronounced implications for the seasonal prediction of winter rainfall in southern 
Africa, effectively suggesting that there are no known sources of predictability (in terms of lower 
boundary forcing and radiative forcing) for this region. Over the tropics, predictive skill is the highest 
in the AMIP simulations, likely as a direct response of atmospheric circulation to SST forcing. However, 
this skill is relatively low over the western Indian Ocean and western Pacific Ocean, indicating a 
relatively larger role of internal variability for these regions. This finding has implications for the 
seasonal prediction of landfalling tropical cyclones over southern Africa, and eastern Australia. 
Operational seasonal forecasting needs to predict the slow-changing lower-boundary and radiative 
forcing conditions, which places it in a disadvantaged position compared to AMIP-simulations. 
However, operational forecasting can draw information of the slowly changing planetary waves from 
the latest set of atmospheric initial conditions, and their incorporation in the operational prediction 
system through data assimilation. The findings presented here suggest that for the most southern 
parts of the Southern Hemisphere continents, including the southwestern Cape of South Africa, south-
eastern Australia and the southern tip of South America, the seasonal prediction of winter rainfall and 
underpinning circulation anomalies need to focus on improved systems of initialisation and data 
assimilation, rather on sources of predictability, since for these regions the latter is insignificant 
compared to the dominating role of internal variability. 

 

4.2 Multi-year droughts analysis 

Background 

Drought is a multi‐faceted phenomenon that occurs across a range of temporal and spatial scales and 

is experienced across a range of societal sectors that are dependent on climate and water resources 

(Wilhite, 2000). It is a consequence of climate anomalies and human water use practices, but many 

impacts on society are more directly related to hydrologic conditions resulting from these two factors. 

Despite various type of droughts, hydrological and socio-economic droughts limit use of water for 

industrial and domestic consumptions, and negatively affects production and wider economy (FAO, 

2004). We focus here on the assessment of the regional interannual to multi-decadal variability and 

changes of droughts and other related environmental conditions. This ongoing study has furthermore 

endeavoured to understating the driving mechanisms that presumably shape these variability and 

changes.   

 

Methodology and data 

The analysis uses model simulations emanated from the CSIR seamless forecasting system (SFS). The 
SFS uses the conformal-cubic atmospheric model (CCAM; McGregor and Dix 2008). The model is 
developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Austria. 
The SFS has applied over range of timescales (i.e., weather forecast to climate change projections). 
The system can also be applied globally with a quasi-uniform horizontal resolution or stretched grid 
mode, which yields a variable horizontal resolution with regional or local details needed over a region 
of interest. In our case, the model interactively couples a sophisticated biosphere model, referred to 
as Atmosphere Biosphere Land Exchange (CABLE; Kowalczyk et al. 2013). In addition, it includes a 
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prognostic aerosol scheme due to Mitchell et al. (1995) which can be applied consistently with the 
emission inventories and radiative forcing specifications of the Coupled Model Intercomparison 
Project Phase Five/Six (CMIP5/6; Taylor et al., 2012). The model also incorporates biogeochemical 
knowledge and elements of the terrestrial carbon cycle.  

The simulations comprise 50km horizontal resolution of present-day (baseline) climate and 

projections of future climate simulations over Africa. It covers the period from 1971 to 2099, which 

comprises the downscaling of 6 model outputs from the CMIP5. The simulations were made for two 

Representative Characteristic Pathways (RCPs) scenarios: RCP4.5 (mitigation scenario; Thomson et al., 

2011) and RCP8.5 (uncheck scenario; Riahi et al., 2011). These simulations were extensively applied 

and fairly explained in previous studies (e.g., Muthige et al., 2018; Beraki 2019). Nonetheless, results 

for the latter presented in this report. 

 

Analysis 

Historical observed interannual and multi-decadal variability 

The historical analysis is based on the Climate Research Unit (CRU TS v. 4.04; Harris et al., 2020). The 

data has a range of climate variables including rainfall and potential evapotranspiration (PET) and is 

suitable for calculating both the SPI (Standardized Precipitation Index; McKee et al., 1993, 1995) and 

SPEI (Standardized Precipitation-Evapotranspiration Index; Vicente-Serrano et al., 2010). The CRU is 

presumably the most reliable available high-resolution (50km) global observed dataset particularly in 

places where reliable in situ observations are not readily available mostly in Africa.  

We investigate the observed interannual to multi-decadal variability and changes of droughts and 

other environmental conditions that directly affect rainfall, streamflow, and river discharges across 

major River Basins of over Africa. We present herein the Orange River basin (excluding the northern 

transboundary contributions from Namibia, Zimbabwe, and Botswana). The Orange is the largest river 

system in Africa south of the Zambezi and forming the western border of Lesotho, and the Vaal and 

flows west to the Atlantic Ocean (Cambray et al., 1986). 

Figure 14 presents how the 20th Century and the last two decades observed interannual and multi-

decadal variability and changes of drought and other environmental conditions affect moisture budget 

and streamflow extents over the Orange River Basin.  

The SPEI during the historical period, which spans a period of over 120 years (1901 to 2019), suggests 

that the succession between droughts and floods was likely the consequence of natural rainfall 

variability. Furthermore, it is also apparent although the response of the SPEI is delayed to the 

observed steady increase of temperatures since the 1980s (as a drought develops slowly), the last two 

decades have seen a faster amplification of SPEI severity than its SPI counterpart. This could be due 

to moisture loss through evaporation (PET) from the drainage systems since 2000s as the global 

average temperature has increased by 1.2°C in 2020 relative to the pre-industrial era (WMO, 2020). 
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Figure 14: Observed time-series near-surface air temperatures (tscrn),  moisture loss due to potential 
evaporation (pet), and droughts (SPEI and SPI) conditions over the Orange River Basin (catchment within 

South Africa). The assessment, which shows basin-wide interannual to multi-decadal variability and changes 
during the last 120yrs (1901 to 2019) based on the CRU climate data. The drought graphs also depict the 3, 6 
12, 24, 36 months’ scale. Furthermore, all of them also subject to 24 months running mean (smoothing) to 

detect the slowly evolving signal. The severity and scale tend to increase proportionally, where ≤the 12-
month scale is shaded with light blue and light pink for the tendency of wetness and dryness respectively. 

Graphs produced with NCAR Command Language (NCL, 2017) 

 

Future projected interannual and multi-decadal variability 

To achieve this analysis, we have revisited the drought work done for the CSIR Greenbook (Beraki 

2019). The work comprises at range of spatial details including at the catchment level and Continental 

Africa. Figure 15 shows the state of drought under global warming of 3oC and RCP8.5 worst-case 

scenario using the SPI and SPEI indices. Also shown is the multi-decadal observed (CRU) and modelled 

SPI multi-decadal variability and trends, which spans a period of over two centuries (1901 to 2099). 

The analysis suggests that although the historical period is largely explained by natural variability, the 

region may be heading towards future climate system characterized with intense and more frequent 

droughts under global warming of 3oC and with the current emission trajectory leading towards the 

end of 21st century. Besides, those regional may seem to benefit from the change including the 

greening of the Sahara Desert (Figure 15(a)). Notwithstanding, when the moisture loss is accounted, 

the continent may be exposed to a perpetual water stress without exception (Figure 15(b)).  

https://www.ncl.ucar.edu/
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Figure 15: The state of drought under 3oC and above global temperature goals and RCP8.5 
scenario using two indices of drought (a, b) and multi-decadal observed and modelled drought 

(SPI) variability and trend (c).   

Summary 

The interannual and multi-decadal drought variability over the Orange River basins is largely explained 

by the natural variability throughout the 20th Century. The difference between the SPI and SPEI during 

this period was barely noticeable further suggests that the succession between droughts and floods 

was likely the consequence of rainfall variability. The response of the SPEI delayed to the observed 

steady increase of temperatures since the 1980s presumably because droughts develop slowly. 

However, the last two decades have seen the amplification of SPEI severity faster than its SPI 

counterpart. The worsening of water stress due to loss from surface water, drainage systems, and 

other covers is likely associated with temperature amplification. The impact of drastically rising 

temperatures on the future moisture budget and surface water resources may arise from the 

continental scale loss of water due to potential evapotranspiration (PET), as suggested by the 

markedly worse drought conditions depicted in Fig. 15b (SPEI) compared to Fig. 15a (SPI) for a future 

world where global warming has reached the level of 3 ℃. This is consistent with the increasing impact 

of rising temperatures on the historical variability in drought over the last two decades (Fig.14). 

However, the impact of climate change on rainfall is complex and nonlinear in nature and its signature 

is likely felt with a drastic shift on rainfall bearing systems. This gradual shift may be due to the 

northward migration of the tropical temperate cloud bands associated with the Inter-Tropical 

Convergence Zone (ITCZ) during austral summer and the poleward displacement of the frontal system 

associated with the westerlies during austral winter as investigated in section 5.2.  
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4.3 Baroclinic instability analysis 

Background 

This section focuses on the analysis of the ability of seasonal forecasts to describe energy transfer in 
the atmosphere, applying spectral analysis to study the winter atmospheric variability at the mid-
latitudes of the Southern Hemisphere from 1993 to 2020. We estimate the power content of the 
atmospheric phenomena typical of mid-latitudes, such as baroclinic perturbations. This is done by 
comparing the results of the ERA5 climate reanalyzes with those of the long-range forecasting system 
SEAS5, both provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and 
the seasonal forecasts operated by the Deutscher Wetterdienst (DWD) and Meteo France. The 
reference dataset consists of the geopotential height fields of 500 hPa belonging to the ERA5 
reanalysis and the seasonal forecast (SF) provided by ECMWF (SEAS5, 25 ensemble members), and 
the ones operated by the Deutscher Wetterdienst (DWD, 30 ensemble members) and Meteo France 
(25 ensemble members).  

 

The ability of climate models to correctly predict the intensity of baroclinic instability is a very 
important requirement, as this phenomenon is a significant component of the climate system, 
associated with the meridional transport of a large amount of energy and momentum. Moreover, 
baroclinic instability is related to precipitation activity and its intensity. For this reason, an analysis of 
the ability of seasonal forecasting to correctly predict baroclinic activity can contribute to the 
understanding of the skill of precipitation prediction. We perform a space-time spectral analysis to 
quantify the power content of the atmospheric phenomena, computing the Hayashi spectra of the 
500-hPa geopotential height field, which are named after the first who formulated a method for 
decomposing waves through spectral analysis (Hayashi, 1971). Subsequently, Pratt (1976) and 
Fraedrich and Bottger (1978) reinterpreted the method for calculating the power spectra of space-
time series. The analyses made by Dell'Aquila et al. (2005, 2007), which we used as a starting point, 
were partly based on these studies. In addition, following the procedure described by Dell’Aquila et 
al. (2006), we evaluate the Baroclinic Amplitude Index (BAI), an indicator that allows quantifying the 
intensity of the baroclinic activity.  

 

Methodology 

Since the purpose is to analyses the Southern Hemisphere winter atmospheric variability, the months 
June, July, and August (JJA) have been selected for both the reanalysis and the SF. The three months 
have lead times equal to 1, 2, and 3 respectively since we set May as the issue month. For both the 
reanalysis and the seasonal forecast datasets, we select the latitude band between 30°S and 75°S, to 
capture the bulk of the baroclinic activity and low-frequency planetary waves (Dell'Aquila et al., 2005). 
Subsequently, we perform the weighted average of the geopotential field on this latitudinal belt, 
obtaining a one-dimensional longitudinal field representative of the atmospheric variability at mid-
latitudes. Therefore, the geopotential height field, which originally varied both zonally and 
meridionally, has a spatial dependence only on the longitude after it has been averaged over the 
latitudinal direction. Before performing all the subsequent calculations, we have reduced the spatial 
resolution of ERA5, bringing it from 0.25° to 1°, to ensure that the reanalysis dataset and the seasonal 
forecast datasets are consistent with each other. To do this, we applied a nearest-neighbor 
interpolation to the time-longitude-dependent geopotential height field. Afterward, we applied the 
Fourier space-time decomposition, to obtain a geopotential height field in the domain of frequencies 
and wavenumbers, instead of time and longitude. We used the Hayashi technique, with reference to 
Hayashi (1971) and Pratt (1976), to create the power spectra and distinguish the standing and 
traveling wave patterns. The variability of the geopotential height field in terms of periods and zonal 
wavenumbers can be described by the spatio-temporal Fourier decomposition introduced by Hayashi 
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(1971, 1979). Hayashi’s technique allows the creation of power spectra of space-time series as a 
function of the frequencies ω and the wavenumbers k. According to Hayashi's treatment, for a periodic 
series in space x and infinitely extended in time t, the power spectra can be divided into standing and 
traveling components, the sum of which constitutes the total signal. It is important to underline that 
the decomposition of the original signal into standing and traveling parts is based on the fact that 
these waves are generated by different mechanisms and therefore attributable to different physical 
phenomena. 

 

Baroclinic Amplitude Index 

Baroclinic activity is quantified by calculating the Baroclinic Amplitude Index (BAI). The Baroclinic 
Amplitude Index is useful for getting an idea of baroclinic intensity and understanding how much 
energy is being released from the atmosphere in the form of rain and heat fluxes on Earth. The higher 
the BAI, the stronger the baroclinic activity. Before this metric can be calculated, a high-pass filter 
must first be applied to the daily geopotential field to obtain only the modes with a period of less than 
10 days (Dell'Aquila et al., 2006). For this purpose, the Fourier transform is applied to the 500-hPa 
geopotential to express it in the temporal frequency domain. Then all geopotential heights 
corresponding to a period of more than 10 days are set to zero, while the others remain unchanged. 
The period is then calculated as the inverse of the frequency. Subsequently, we apply the inverse 
Fourier transform to return to the time domain. We then take the weighted average of the 
geopotential field on the latitudinal belt bounded by 30 °S and 75 °S. For each day in the winter period 
(JJA), the 500-hPa geopotential height is decomposed along the longitudinal direction using the 
Fourier transform. Finally, we calculate the index by applying the integral of the obtained Fourier 
coefficients between zonal wavenumbers 4 and 7, which comprise the region where baroclinic activity 
is strongest. The BAI is then calculated with the following formula: 

𝑍4−7(𝑡) = (∑

7

𝑘=4

2|𝑍𝑘|2)
1
2 

 

Hayashi spectra of ERA5 reanalysis 

Figure 16 shows the Hayashi spectra of the 500-hPa geopotential height averaged over the 28 winters 
of 1993-2020, calculated from the ERA5 reanalysis dataset. In particular, the four components of the 
spectra are displayed: total, stationary, travelling eastward and travelling westward.  

 



D3.1 Climate Projections Analysis over the SADC region 

32 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

 

Figure 16: Hayashi spectra for 500-hPa geopotential height from ERA5 averaged over the 28 
winters (1993-2020) in the Southern Hemisphere (30-75°S) 

 

The spectra express the power density of the wave field in terms of frequency and zonal wavenumber. 
If we look at the total power spectrum (a), we can see from the darker colors that a large fraction of 
the total power is concentrated in periods between 4 and 16 days and in wavenumbers between 3 
and 7. In this region we can identify the baroclinic disturbances, travelling waves with a period of the 
order of 2-7 days, wave numbers around 4-7 𝑚−1 and a spatial scale of several thousand kilometers. 
This domain is related to the eastward propagating waves (c) and includes the synoptic phenomena 
associated with the release of available energy driven by conventional baroclinic conversion 
(Blackmon, 1976). They are thus involved in energy transfer in the Southern Hemisphere at mid-
latitudes, leading to atmospheric stability or instability. Although the overall variability is mainly 
explained by the eastward propagation component, we can see that it also extends to planetary scales, 
with k = 3-4 and a period of about 16 days. 

Standing waves (b) are characterized by low frequencies (long periods) and low wavenumbers. These 
types of waves allow us to get an idea of the average atmospheric situation. As Dell'Aquila et al. (2005) 
has shown, their contribution in the northern hemisphere has been considerable, mainly due to the 
Rocky Mountains. In the Southern Hemisphere, they have a peak in wave number around 3 𝑚−1, 
which could be associated with blocking episodes due to the presence of the Andes. However, they 
play a smaller role, as the Andes do not appear to make a significant contribution to the amplification 
of planetary waves (Adana and Colucci, 2005). Moreover, the westward propagating components are 
particularly weak, as expected in a region where the effects of large-scale topography are small. 

 

Hayashi spectra of SEAS5 seasonal forecast 
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Figure 17: Hayashi spectra for 500-hPa geopotential height of SEAS5 in the Southern Hemisphere 
(30-75°S) averaged over the 28 winters and over the ensemble members. 

 

We show the averaged Hayashi spectra across the members of the SEAS5 ensemble in Figure 17. 

These plots were created by calculating the Hayashi spectra for each individual member and then 
averaging over the entire ensemble. This process naturally smooths out the peaks, which are not as 
noticeable as when looking at each individual element. However, we felt that calculating a 
representative average spectrum of the entire ensemble was more informative than analyzing the 
individual members separately, as these were generated with random perturbations to the initial 

conditions. Nevertheless, we can deduct from Figure 17 that also for the seasonal forecasts, the overall 
variability of the power spectrum of the 500-hPa geopotential height is mainly explained by the 
eastward propagating component, which also extends to the planetary scales (k = 3-4 and period 
around 15 days or more). Figure 18 shows the standard deviation of the SEAS5 ensemble. Using this 
metric, we can understand where the greatest variability exists among all the spectra of the ensemble 
members. 
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Figure 18:  Standard deviation between ERA5 and SEAS5 Hayashi spectra for the 500-hPa 
geopotential height, averaged over the 24 winters.   

 

We can see that there are some peaks for wavenumber k=4 aligned along a horizontal line, which 
means that the seasonal predictions for wavenumber 4 divide the spectrum into 3 distinct days. A 
similar pattern, but smoother, is also visible for wavenumbers around 5. In contrast, for a period of 8 
days, there are some vertically aligned peaks corresponding to different wave numbers. This graph 
shows us that the peaks are not aligned along a sloping line as in ERA5, but that there is a problem in 
the partition of energy both in space (for a period of 8 days) and in time (for wavenumber 4). This 
suggests difficulties in accurately representing the structure of the baroclinic instability by the 
different elements of the seasonal forecast ensemble, as each of them attempts to represent the wave 
dynamics differently. 

 

Difference between seasonal forecasts and ERA5 

Figure 19 shows the mean of the differences between ERA5 and SEAS5 Hayashi spectra, averaged over 
the entire ensemble. 
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Figure 19: Difference between SEAS5 and ERA5 Hayashi spectra for 500-hPa geopotential height 
averaged over the 28 winters and over the ensemble.  

 

Figure 20:  Difference between DWD seasonal forecasting system and ERA5 Hayashi spectra for 
500-hPa geopotential height averaged over the 28 winters and over the ensemble.  
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Figure 21: Difference between Meteo France seasonal forecasting system and ERA5 Hayashi 
spectra for 500-hPa geopotential height averaged over the 28 winters and over the ensemble. 

It can be seen that in all three cases the differences are very small for standing and westward waves 
(Figure 19b-d, Figure 20b-d, Figure 21b-d), while the largest discrepancies occur for eastward waves 
(Figure 19c, Figure 20c, Figure 21c). The large peak of positive power (in blue) observed for periods of 
about 12 days and wavenumber 4 shows that in this spectral region the variability detected by the 
seasonal forecasts is much larger than that of ERA5. This overestimation occurs in all three seasonal 
forecasts but is less evident in Meteo France (Figure 21a-c). The blue peak around wavenumber 4 and 
12-15 days is partially offset by the negative peaks (light red) around 15-17 days. There is also greater 
variability between 4 and 7 days, as can be inferred from the alternation of red and blue peaks in this 
region. 

 

The Baroclinic Amplitude Index is calculated for each day of the time series. Through this analysis it is 
possible, on the one hand, to observe the change in the index over the years and, on the other hand, 
to understand whether the seasonal forecasts can calculate it correctly in comparison with the 
reanalyzes. 

To show how the BAI is distributed in the ensemble, we use a box plot (Figure 22, Figure 23, Figure 
24). The center line in the box represents the median of the data, which indicates that half of the data 
is above this value, the other half below. The mean is shown as a green triangle. If the data are 
symmetrical, both the median and the mean are in the middle of the box. 
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Figure 22: BAI of the ensemble members for SEAS5 (boxplot) and yearly averaged BAI for ERA5 
(blue line). The integration is computed between k=4 and k=7. 

 

 

 

Figure 23: BAI of the ensemble members for DWD (boxplot) and yearly averaged BAI for ERA5 
(blue line). The integration is computed between k=4 and k=7. 
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Figure 24: BAI of the ensemble members for Meteo France (boxplot) and yearly averaged BAI for 
ERA5 (blue line). The integration is computed between k=4 and k=7. 

 

If we look at the boxplots, we see that the average annual BAI, calculated based on the reanalysis data 
and represented by the blue line, has a strong annual variability. The seasonal forecasts, on the other 
hand, show this variability only to a limited extent, as the signal remains relatively constant over the 
years. Moreover, BAI is overestimated by the seasonal forecasts, which becomes even more obvious 
when looking at the DWD forecast models (Figure 8). In this sense, the result of the seasonal forecasts 
of Meteo France is better, as there is no such overestimation. This is consistent with the graphs shown 
in Figure 21, where the difference between forecast and reanalysis is an alternation of peaks. But even 
in this case, the annual variability of BAI is not well captured. 

 

Summary 

The spectral analysis carried out showed that the winter variability in the southern hemisphere can 
be explained mainly by the eastward propagation component. In addition, it is shown that: 

● The Hayashi technique can be considered a valid tool for identifying the waves that develop 

in the atmosphere because of various processes, especially baroclinic waves 

● The spectral analysis carried out reveals, as expected, a series of peaks and structures that can 

be attributed to the phenomenology of baroclinic waves propagating towards the east 

● Looking at the BAI boxplot, we see that the seasonal predictions do not always capture the 

annual variability, but a signal that remains constant over the years and instead becomes 

evident in the reanalysis 

● The problems of seasonal forecasting in correctly predicting baroclinic activity may be directly 

related to the low skill values of precipitation predictions observed in the seasonal forecast 

Therefore, this demonstrates the importance of baroclinic activity in understanding the role of rainfall 

and temperature variability in seasonal forecast data. FOCUS-Africa case studies can thus directly 

benefit from the application of this approach to better understand how seasonal forecast precipitation 

and temperature fields can be corrected to account for observed variability. 

 

 



D3.1 Climate Projections Analysis over the SADC region 

39 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

4.4 A show case for Malawi 

Background 

Lake Malawi region experiences a mild tropical climate with a monomodal austral summer rainy 
season October-April) and dry winter (May to September). The rainfall over Malawi is shaped by the 
interaction of the ITCZ, the sub-tropical high-pressure belt in the south, and the topography (Jury & 
Mwafulirwa, 2002). The ITCZ marks the convergence of the north-easterly monsoon and south-
easterly trade winds, and during the rainy season it oscillates over the country, often connecting with 
troughs in the Mozambique Channel. Malawi is also affected by the northwest monsoon, which brings 
the recurved tropical Atlantic air that reaches Malawi through the Congo basin. This system brings 
well-distributed rainfall over the country (Jury & Mwafulirwa, 2002). The country is also affected by 
tropical cyclones from the west Indian Ocean. Depending on their position, cyclones may result in 
either dry or wet spells over Malawi.  

 

 

Figure 25: Integrated Vertical moisture transport in surface-700mb, mean annual flux (vectors), 

moisture divergence (colour map). Letters mark location of cores of Low-Level Jets (a - 
Turkana, b - Rufiji, c - Malawi, d - Zambezi, e- Limpopo). Figure reproduced verbatim from 

Munday et al. (2021). 

 

New insights into the drivers of rainfall variability in the southern Africa region recently emerged from 
work focused on Low-Level Jets (LLJs), which form in the valleys punctuating the East African rift 
system (Figure 25). Barimalala et al. (2021) show that the LLJs transport most of the water vapor to 
central Africa from the Indian Ocean and those flows modulate regional sub-continental scale 
phenomena such as Angola Low and ridging high over south-eastern Africa and penetration of the 
tropical Atlantic air masses into the mainland. Munday et al. (2021) reveal that the enhanced easterly 
winds from the subtropical Indian Ocean led to an increase in low-level divergence in water vapor 
export, and consequently to drought in eastern and southern Africa, including the Lake Malawi region. 
Notably, they identify one of the jet “passages” to be in the vicinity of Lake Malawi.  

Here we investigate the linkage between low level jets or low-level moisture fluxes in general, and 
rainfall variability over the Lake Malawi catchment (or upper Shire basin), towards potential 
implications to rainfall predictability at seasonal time scales as well as improvement of climate 
projections through better understanding of regional dynamics underlying rainfall delivery over Lake 
Malawi catchment. 
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Methodology and data 

We use ERA5 wind and humidity (u, v, q) reanalyses data integrated over surface to 700 mb, and for 
maintaining consistency between moisture fluxes and rainfall, also the ERA5 rainfall. We calculate 
moisture fluxes over the African domain (40N-40S, 25W-55E) in all levels between 1000mb and 
700mb, filtering out levels below the pressure at surface, individually for each day in the period of 
1979-01-01 and 2021-12-31. We schematize the Lake Malawi catchment as a “box’ spanning 33E to 
35.5E, and 14.50S to 9.25S (Figure 26). In the analyses, we define two low level moisture flow regimes 
- westerly flow and easterly flow and schematize them as occurring on days when the net zonal flow 
across the western boundary of the Malawi “box”, i.e. across the “window” spanning 14.50S to 9.25S 
along the 33E meridian is westerly and easterly respectively. 

 

 

Figure 26: Location of Lake Malawi “box” and location of the three Low Level Jets identified by 
Munday et al. 2021.  

Analysis 

Mean annual low level (surface to 700mb) moisture flux in the Lake Malawi region is illustrated in 
Figure 27. It is dominated by south easterly flow, and while the Zambezi and Turkana Jets of Munday 
et al. (2021) are relatively well articulated, the Malawi one appears not to be strongly evident. The 
Zambezi LLJ clearly recurves the south easterly flow of moisture from over the southern Indian Ocean, 
south of the Madagascar into easterly to north-easterly fluxes in the interior. The flows in the vicinity 
of Lake Malawi are clearly easterly.  

 

A clearer picture emerges when the mean monthly moisture fluxes are visualized (Figure 28). The 
Zambezi LLJ remains active throughout the year, recurving south-easterly flow into the interior of the 
sub-continent. In Oct-Dec period, this LLJ appears to also receive moist tropical air through transport 
from north-east across Lake Malawi region. 
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Moisture fluxes in the Lake Malawi region in the core winter period (May-Aug) are dominated by dry 
south-easterly flows, with an increase of moisture fluxes and an increase in easterly flows in Sep-Oct. 
Early rainy season (Nov-Dec) is characterized by strong moisture transport into the Lake Malawi 
catchment and further toward the interior from the tropical Indian Ocean by north-easterly winds. 
The period of Jan-Feb appears to be characterized by minimal moisture fluxes across the Lake Malawi 
“box”. This is surprising, as these two months are in fact the wettest months of the year, and this is 
explored further below.  

 

 

Figure 27: Mean annual low level moisture flux in Lake Malawi region. Lines mark LLJ core 
regions identified by Munday et al. 2021, red rectangle marks Lake Malawi “box”, as in Figure 

26 
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Figure 28: Mean monthly low level moisture flux in Lake Malawi region. Red rectangle marks 

Lake Malawi “box” as per Figure 26. 

 

Climatology of moisture fluxes across Malawi “box” boundaries (Figure 29a) reflects a setting of 
“throughflow” - with zonal influx and outflux compensating each other, with similar pattern, although 
to a lesser extent, present in meridional fluxes. The seasonal pattern of the net flux (calculated by 
summing inflow and outflows across the boundaries) corresponds to the seasonal pattern or rainfall 
(Figure 29b), although there are relative differences between the early (Oct-Dec) and late (Jan-Apr) 
rainy season. There is a net moisture outflow from the Malawi region during the wintertime (May-
Sep), which likely reflects the impact of evaporation from Lake Malawi on air moisture content. 

The disparity between the overall magnitude of zonal moisture fluxes between Jan-Feb and other 
months is striking (order of magnitude difference in Figure 29a), although that difference has no 
impact on the net flux. This disparity is like the effect visible in monthly maps (Figure 28) and will be 
addressed explicitly later. 
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Figure 29: Low level moisture fluxes across the boundaries of the Malawi Box (a) and 
comparison of seasonality of net moisture flux and rainfall (b). Moisture flux taken as monthly 
zonal for east and west boundaries, and monthly meridional for north and south boundary. We 
adopted a convention where the positive value of moisture flux denotes inflow into the “box”. 

  

The correlations between boundary fluxes as well as the net box flux and rainfall calculated on a 
monthly basis over the period of 1979-2021 are illustrated in Figure 30 and are supported by time 
series plots in Figure 31, Figure 32 and Figure 33. Important effects that emerge are as follows: 

● There is a negative correlation between Lake Malawi “box” rainfall in the core of the rainy 
season (Nov-Mar) and the magnitude of the moisture flux across the eastern boundary, 
implying that the stronger the LLJ, the less rain falls over the Lake Malawi catchment 

● There is positive, although weaker correlations between “box” rainfall and moisture inflow 
across the northern and southern boundaries 

● The correlations between “box” rainfall and the net low level moisture flux are high for Nov-
Dec and Mar-May parts of the rainy season (0.65-0.75) but are very weak for Jan-Feb (<0.25). 
The correspondence of the low-level net moisture flux and rainfall in Nov-Dec (Figure 33) is 
particularly remarkable.  
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Figure 30: Correlation between boundary monthly low-level moisture flux and rainfall in Lake 
Malawi region. Flux direction convention as in Fig. 5. 

 

 

Figure 31: Time series of monthly low level zonal moisture flux anomalies and monthly rainfall 

anomalies in the Lake Malawi “box”. Flux direction convention as in Figure 29, correlations 
summarized in Figure 30. 



D3.1 Climate Projections Analysis over the SADC region 

45 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

 

Figure 32: Time series of monthly low level zonal moisture flux anomalies and monthly rainfall 
anomalies in the Lake Malawi “box”. Flux direction convention as in Figure 29, correlations 

summarized in Figure 30. 
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Figure 33: Time series of net low level moisture flux anomalies and monthly rainfall anomalies 

in the Lake Malawi “box”. Correlations summarized in Figure 30. 

 

To fully understand the anomalous patterns in moisture fluxes and rainfall during Jan-Feb period, 
manifested in Figure 28 and Figure 29 and in net flux correlation pane in Figure 30, one has to consider 
the following elements: 

● The analyses are performed on monthly means of moisture fluxes. That is appropriate if 
shorter term (daily) fluxes maintain consistency in direction during the month. The monthly 
averaging becomes, however, inadequate if during a given month conditions occur that 
manifest through fluxes in opposite directions 

● One of the sources of Malawi rainfall in the northwest monsoon, which brings the recurved 
tropical Atlantic air that reaches Malawi through the Congo basin (Jury & Mwafulirwa, 2002). 
That mechanism implies westerly moisture transport, and there are signatures of such in Jan-
Feb maps in Figure 27. It is likely that the monthly aggregate analyses conceal moisture flow 
patterns underlying that mechanism.  

To explore the role of north-west monsoon and westerly moisture flows from the Congo region that 
are likely associated with that, we disaggregate the daily moisture flux datasets into two subsets: 

● Easterly flow across the Malawi domain, capturing days when integrated flux across the 
western boundary of the Malawi “box” is easterly 

● Westerly flow across Malawi domain, capturing days when integrated flux across the western 
boundary of the Malawi “box” is westerly.  
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Figure 34: Mean monthly low level moisture flux in Lake Malawi region on days with westerly 
flow. Red rectangle marks Lake Malawi “box” as per Figure 26. 
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Figure 35: Mean monthly low level moisture flux in Lake Malawi region on days with easterly 
flow. Red rectangle marks Lake Malawi “box” as per Figure 26. 

 

Figure 34 and Figure 35 illustrate monthly aggregate low level moisture fluxes for days with westerly 
and easterly flow respectively. Days with westerly flow occur 13-16 days per month in Jan and Feb, 5-
7 days per month in March and Dec, and less than one day a month in other months. The westerly 
moisture flux from the interior of the continent into the Lake Malawi domain is very clear in the Dec-
Mar, and perhaps in November, but in other months it seems to be an artifact of windless, stable 
conditions across the large part of the continent. Comparison of Lake Malawi “box” rainfall associated 
with the easterly and westerly flow (Figure 36, Figure 37, Figure 38) reveals the following: 

● Region-average daily rainfall when brought by the westerly flow is larger than that brought by 
the easterly flow (~10mm/day vs. ~5mm/day). Highest widespread rainfall events (more than 
30mm across the entire domain) is associated with the westerly flow 

● Overall, approx. 33% of rainfall over the Malawi domain is delivered during the westerly flow 
events 

● There is an indirect relationship between the amount of rainfall delivered during days with 
the easterly and westerly flow, and a direct relationship between total annual rainfall 
delivered during such days and number of such days in a year. This suggests “competing” 
dynamical drivers of the two sources of moisture 
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● On the monthly time scale, Jan-Feb rainfall during days with westerly moisture flux exceeds 
that from days with westerly fluxes, but Dec and March, the proportion of rainfall delivered 
under the westerly flow regime is lower, about 30% of total, and during the remaining months 
of the year - it is insignificant. 
 

 

Figure 36: Histogram of region-average rainfall on days with easterly and westerly low level 

moisture flow. 

 

 

Figure 37: Contribution of rainfall under easterly and westerly flow regimes to total annual 

rainfall. 
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Figure 38: Contribution of rainfall under easterly and westerly flow regimes to total monthly 
rainfall. 

Summary 

The analyses indicate that low level moisture transport plays an important role in rainfall over the Lake 
Malawi catchment, and its dynamics are linked to seasonal and interannual rainfall variability. The 
strength of the Malawi Low Level Jet is, however, inversely proportional to rainfall over the Lake 
Malawi catchment during the core of the rainy season (Nov-Mar), i.e. stronger LLJ is associated with 
negative rainfall anomalies, but the relationship is inverse during the rest of the year, i.e. during 
shoulder season rains, and during winter. Rainfall during the shoulder rainy seasons (Nov-Dec and Feb-
Apr) is clearly associated with net low level moisture flux over the Lake Malawi domain. The 
relationships between rainfall and LLJ flux are obscured in analyses of monthly aggregates, particularly 
during the Jan-Feb, due to competing influences of two air masses - easterly flow mostly from tropical 
Indian Ocean, and westerly flow from interior of the continent originating from tropical Atlantic. When 
disaggregated by the zonal moisture transport direction over the Lake Malawi domain, rainfall 
associated with the westerly flow contributes ~30% or total annual rainfall, over 50% or Dec and Jan 
rainfall and ~20-25% to November and March rainfall. Importantly, rainfall associated with westerly 
moisture flow appears to have a larger regional average than that associated with the easterly flow.  

These relationships clearly indicate the importance of the dynamics of the low-level moisture fluxes, 
and, of the interactions between conditions facilitating westerly and easterly moisture flux, on the 
rainfall dynamics over the Lake Malawi catchment.  

 

5 Analysis of large-scale climate processes across SADC 

Large scale changes are predicted by using weather and climate models more skilfully than local 
extremes, so understanding the link between the two is crucial to understanding and characterizing 
the impacts of extremes such as drought. Understanding climatic situations where concurrent and 
recurrent extremes events are more likely to happen represents one important facet of disaster risk 
management. By understanding the teleconnections and their associated hazards, it becomes possible 
to develop risk management methods optimizing productivity in the energy, agriculture and other 
sectors of economy and society. El Niño–Southern Oscillation (ENSO), the Indian Ocean and the South 
West Indian Ocean Dipole (IOD, SIOD) modes and the Southern Annular Mode (SAM) are here 
considered. In the past, the long-range forecasts of the Southern Africa precipitation had been a 
challenge for climate modelling. Although its skill is still far from satisfactory, recent progress of 
climate modelling is making it possible to produce useful predictions up to several months ahead 
particularly when teleconnections are active. Better understanding of dominant variability modes and 
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processes enables us to understand the predictable variability of precipitation over the region. This 
requires the investigation of teleconnections and predictability at seasonal and decadal scales useful 
for the regional case studies i.e. rainfall timing, onset and extent, and accumulated amount as well as 
wind power. Therefore, we investigate some of the main observed ENSO, IOD, SIOD, SAM 
teleconnections and their link with different variability and extremes of weather in southern Africa. 
Rainfall deficit, extreme precipitation events, heatwaves, occurring in critical phenological phases, can 
considerably reduce crop yields, even if annual and seasonal mean climate conditions are at or near 
normal.  

5.1 El Niño Teleconnection characterisation 

Background 

We investigate here the prospects of improving seasonal predictions of Essential Climate Variables 
(ECVs: precipitation, mean, maximum and minimum temperature) in SADC by means of the 
characterization of teleconnection links with large scale patterns like El Niño Southern Oscillation 
(ENSO). Originally, the planning involved the study of the North Atlantic Oscillation (NAO) and Niño3.4, 
but authors such as Lüdecke et al. (2021) showed the influence of the NAO is constrained to northern 
Africa. Consequently, in this work, NAO has been replaced by another index, the Atlantic Niño (ATL3), 
which has shown some potential in the tropical African countries (Foltz et al., 2019). As for ENSO, a 
negative (positive) correlation with the austral summer (winter) precipitation in Southern Africa has 
been already reported (Philippon et al., 2012, Funk et al., 2018). The following sections include a 
selection of results for precipitation and mean temperature to illustrate their relevance for the SADC 
area. Nevertheless, the analysis has been conducted for all the seasons and ECVs and, thus, the results 
are fully available to all the project partners.  

 

Methodology and data 

The reference dataset used in this study is the monthly ERA5 reanalysis from 1981 to 2016 (Hersbach 
et al., 2018). The selected variables include Sea Surface Temperature (SST) for computing the 
teleconnection indices; and four ECVs (i.e., precipitation, mean, maximum and minimum 
temperatures). The seasonal forecast used as a predictability benchmark is the ECMWF System 5 data 
set (SEAS5, Johnson et al., 2019). The same variables were downloaded from the Copernicus Data 
Store (CDS) for the same period. The domains of the two teleconnection indices are: 5ºN - 5ºS, 170ºW 
- 120ºW, for the Niño3.4 (Trenberth, 1997; Trenberth and Stepaniak, 2001); and 3ºN - 3ºS, 20ºW - 
0ºW, for the ATL3 (Hounsou-Gbo et al., 2020). These regions are depicted in Figure 39. 

 

 

Figure 39: The locations of the teleconnection indices: Niño3.4 (5ºN - 5ºS, 170ºW - 120ºW) and 

ATL3 (3ºN - 3ºS, 20ºW - 0ºW). 

 

 

The first step has been to compute the time series for the teleconnection indices (i.e., Niño3.4 and 
ATL3) from the ERA5 monthly SST data covering the period 1981-2016. This computation has been 
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carried out in two ways: for every single month and for three-month aggregations. After that, the link 
between these indices and the corresponding ECVs (also from ERA5) has been assessed up to one year 
into the past. By relating the ECVs’ anomalies for each month (three-month season) with the 
teleconnection anomalies from the same paired month (three-month season) and, subsequently, with 
the teleconnection anomalies from the preceding months up to twelve months (three-month seasons) 
into the past. This association process has been performed by computing the Pearson correlation 
coefficient for each grid point over the SADC region.  

 

The second step set up a linear regression model for each grid-point, time-lag, and teleconnection 
index, by using Niño3.4 and ATL3 as predictors for the calculation of the ECVs (in a leave-one-out 
approach). Turning to the SEAS5, the intrinsic biases have been reduced by applying a variance 
inflation bias correction (von Storch and Zwiers, 2001; Doblas-Reyes et al., 2005). To understand 
whether the linear regression approach could outperform the bias corrected SEAS5 seasonal 
predictions, the Pearson (ensemble-mean) correlation coefficient and the fair Ranked Probability Skill 
Score (FRPSS, Fricker et al., 2013; Ferro, 2014) have been applied to obtain their respective 
deterministic and probabilistic skills.  

 

Niño3.4 teleconnection with ECVs 

Figure 40 (Figure 41) shows the correlation of DJF precipitation (temperature) with the Niño3.4 index 
from 12 lagged months over the SADC region for the 1981-2016 period. Overall, precipitation 
manifests a mixture of positive and negative correlations while a positive correlation is predominant 
for temperature. Turning to the other seasons, precipitation in DJF and SON generally demonstrates 
a stronger signal than in MAM and JJA (Philippon et al., 2012; Funk et al., 2018), whereas DJF and 
MAM seasons attain higher correlation values for temperature. In terms of the seasonal temperature 
maximum and minimum, their features are basically consistent with the mean temperature as shown 
in Figure 41: MAM with the strongest signal remains and it is followed by DJF. 

 

Figure 40: Pearson correlation between DJF precipitation and the Niño3.4 index over the SADC region 

for the 1981-2016 period. The 12 maps represent 12 lag months (from zero to eleven) between December 
and the first month of the used Niño3.4. For example, “Lag 0” means DJF precipitation and DJF Niño3.4; 
“Lag 1” represents DJF precipitation and NDJ Niño3.4 and the last “Lag 11” refers to DJF precipitation 
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and JFM Niño3.4. Correlations between ±0.1 are shaded white for better visualisation of those above 
(below) 0.1 (-0.1). 

 

 

Figure 41: Same as Figure 40 but for DJF mean temperature 

 

As for the spatial patterns of correlation for precipitation, when looking at the lag-zero maps, negative 
(positive) correlations are seen over the regions south (north) to 15ºS (especially in DJF and SON). JJA, 
on the other hand, displays an opposite behaviour. Regarding mean temperature, a widespread 
positive relationship can be found across the SADC region in all four seasons. The spatial distributions 
of temperature maximum and minimum are analogous to the mean temperature except for the north-
eastern SADC region where the temperature maximum shows a negative correlation. Figure 40 and 
Figure 41 also show the effects of lag progression. For instance, the correlation for DJF precipitation 
progressively decreases with the lag month. Moreover, a switch of the direction of correlation (e.g., 
from positive to negative) seems to appear at 4- or 5- lag months in the JJA and SON seasons while 
the relationship remains more stable in DJF (and MAM). It is worth noting that a strong (and positive) 
correlation can be found across the SADC region for DJF (up to the lag-8 month) and MAM (throughout 
the 12 lag months) mean temperature maps. 

 

ATL3 teleconnection with ECVs 

 Figure 42 and Figure 43 introduce precipitation and mean temperature links with the ATL3 index in 
DJF. Generally, the relationship with ATL3 is weaker than with Niño3.4. However, the stronger signals 
remain in the same seasons as Niño3.4: DJF and SON for precipitation and DJF and MAM for mean 
temperature.   

 

When looking at the lag-0 month, the four seasons show totally different spatial patterns. For instance, 
DJF precipitation shows a positive relationship with ATL3 across almost the entire domain while in 
SON, negative correlations are more widespread (although the positive relationship can be seen along 
the western coast of 0-25ºS). As for temperature (of lag-0 month too), a widespread positive 
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correlation is seen in DJF (and SON) while a weak-to-negative relationship for MAM and JJA. Again, 
the temperature maximum and minimum are basically like the mean temperature (not shown here). 

 

 

Figure 42: Same as Figure 40 but for the correlation with the ATL3 index. 

 

 

Figure 43: Same as Figure 41 but for the correlation with the ATL3 index. 
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Regarding the influence of the lagged ATL3 anomalies on the spatial pattern of correlation, DJF 
precipitation shows that the positive correlation in the region north to 15ºS progressively changes to 
negative while the southern areas remain positive. Negative (positive) correlations are seen in the 
northern areas in MAM and SON (JJA) although these relationships tend to weaken with lag month. 
On the other hand, for temperature, there is a switch of correlation over the northern half region in 
DJF (in MAM and SON too but only over the north-eastern area in JJA), changing from positive values 
to a weak-or-negative signal. Lastly, the temperature maximum and minimum are overall analogous 
to the mean temperature. 

 

Predictability enhancement 

The enhancement of seasonal predictability using linear regression models based on teleconnection 
indices comes from the hypothesis that, sometimes, these large circulation connections are poorly 
modelled by seasonal prediction systems over some areas (Lledó et al., 2020 and 2022). Hence, to 
better assess the amount of regional improvement we could get through this statistical approach, the 
numbers of grid points with an increase in the skill metrics have been calculated for each 
season/month and for each index (only over the land area within the SADC region). Here, the word 
‘improvement’ means positive changes of correlations (or FRPSS) from bias corrected SEAS5 
predictions to index-derived predictions which, simultaneously, must also have to be above zero. 
Hereafter, the improvement of correlation and FRPSS for seasonal precipitation and mean 
temperature are shown and discussed as examples. Moreover, the spatial pattern of the improvement 
is depicted with one season (DJF). Regarding the monthly ECVs, the percentages of the grid point with 
increased values of both skill metrics across all the months were, on average: below 10% (5%) for 
correlation of precipitation (the three types of temperature); and below 3% for FRPSS in all ECVs. 

 

Precipitation : Figure 44 (Figure 45) shows the proportion of grid points with higher correlation 
(FRPSS) for the index-derived seasonal precipitation. Each column represents one of the 12 seasons 
from DJF to JFM and the indices are row-wise.  

 

 

Figure 44:  Percentage of the grid points in the land areas of the SADC region (y-axis) with increased 

correlation coefficients of the index-derived seasonal precipitation when compared to the bias corrected 
SEAS5 predictions of lead time up to four months (see the legend). The x-axis ranges from zero to eleven 
representing the lag months between the target season of ECV (see the column title) and the initialization 
month of the used index (see the row title on the right, top for Niño3.4 and bottom for ATL3). Each panel 
is composed of five curves depicting the SEAS5 lead times zero to four months (light to dark green). To 
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fairly compare the index-derived estimates with the SEAS5 predictions, each lead time of the latter was 
compared with the lag months of the former up to the same initialization date. For instance, the SEAS5 
DJF precipitation prediction of lead time four was initialized in August, so the first four points of the lag 
months (zero to three) were removed because their initialization months, from December to September, 

came after August. This removal was applied to all the lead times (except for zero). 

 

Figure 45: Same as Figure 44 but for FRPSS 

 

The correlation of the seasonal precipitation prediction derived from the teleconnection indices has 
been higher than that of SEAS5 prediction in up to 25% of the entire domain. Since the forecasting 
skill of the SEAS5 prediction is decreased with lead time, it is expected to see the highest improvement 
when compared to lead time four SEAS5 predictions (i.e., the darkest green curve). In terms of the 
seasons with better improvement for each index (when compared to lead time 4), Niño3.4 could attain 
values up to 20-25% in AMJ, FMA and JFM whereas ATL3 enhancement ranged the same proportion 
but in NDJ, AMJ and MAM. As for the variability of improvement with the lag time of the index, Niño3.4 
peaked in the earlier lag months in most seasons (except for MAM, FMA and JFM). For ATL3, on the 
other hand, this behaviour has been a little different, because not all the months tend to peak in the 
earlier lags. Regarding the comparison between the indices, Niño3.4 had more grid points with 
improved correlation than ATL3 in all seasons except for NDJ and MAM. 

 

In terms of FRPSS as shown in Figure 45, only up to 5% of the grid points were improved by ATL3 (only 
in DJF and NDJ) while there was almost no addition for Niño3.4. Besides, the lag months with the 
biggest enhancement for ATL3 were also different depending on the season (lag four for DJF and lag 
nine for NDJ). 
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Figure 46: Spatial distribution of the increases in correlation for DJF precipitation estimates derived 

from the Niño3.4 index of 8 lag months (from four to eleven, see the subtitles) when compared with 
SEAS5 lead time four prediction. The first three lag months are removed because the initialization date of 

the used Niño3.4 (from December to September) is later than the initialization date of SEAS5 lead time 
four prediction (August). 

 

To showcase an example of the spatial distribution of this improvement, DJF precipitation is selected 
for illustrative purposes. Actually, Figure 46 shows a marked increase in correlation over the north-
western areas, a band between 15-20ºS and, also, in southern Madagascar. Although those 
improvements decrease with the lag month, they can still be found when a Niño3.4 index of 8 months 
ahead is used as a predictor. The improvement basically comes from locations where the SEAS5 
prediction skills are low and the coupling with the index remains sufficiently strong. 

 

Figure 47: Spatial distribution of the increases in FRPSS for DJF precipitation estimates derived from 

the ATL3 index of eight lag months (from four to eleven, see the subtitles) when compared with SEAS5 
lead time four prediction. The first three lag months are removed because the initialization date of the 
used ATL3 (from December to September) comes later than the initialization date of the lead time four 

SEAS5 prediction (August). 

 

As for the FRPSS, higher values could only be found in lag month four in the southern areas of the 
continent. Afterwards, there was no enhancement in FRPSS until the lag months ten and eleven in 
which very limited improvement could be seen in South Sudan and the western Democratic Republic 
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of the Congo, respectively. When looking at the skills of SEAS5 prediction and the ATL3-derived 
estimate, the latter explains what is shown in Figure 47: the improvement only exists at lag month 
four due to the lack of teleconnection linkage from lag month five onwards.   

 

Temperature : Figure 48 and Figure 49 show the improvement of correlation and FRPSS for seasonal 
mean temperature. Overall, the increases in correlation (FRPSS) for temperature are somewhat lower 
(higher) than precipitation. Furthermore, Niño3.4 tends to have more influence on the temperature 
than ATL3 because of very limited improvement in both skill metrics seen for the latter in most 
seasons. Moreover, the discrepancies of the improvement among the five lead times are much smaller 
than that of precipitation partially due to the relatively higher skills of the SEAS5 temperature 
predictions. For Niño3.4, the highest three seasons with improved correlation and FRPSS are FMA, 
MAM and DJF. 25-30% of the grid points with higher correlation could be found in MAM and FMA, 
and even 14% showed an improved FRPSS in FMA.  

 

 

Figure 48: Same as Figure 44 but for seasonal mean temperature 

 

Figure 49: Same as Figure 45 but for FRPSS 
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Figure 50: Spatial distribution of the increases in correlation for DJF mean temperature estimates 

derived from the Niño3.4 index of eight lag months (see the subtitles) when compared with lead time four 
SEAS5 prediction.  

 

Figure 51: Spatial distribution of the increases in FRPSS for DJF mean temperature estimates derived 

from the Niño3.4 index of eight lag months (from four to eleven, see the subtitles) when compared with 
lead time four SEAS5 predictions. 

 

Hereafter, DFJ is also analysed for illustrative purposes. In Figure 50, an increase in correlation by up 
to 0.3 could be found for the lag months four to six in the areas between 15-25ºS (namely western 
Zambia, eastern Angola and northern Namibia and Botswana). However, the improvement vanished 
from lag month eight onwards partially due to the decrease in correlation in lag month nine. Regarding 
FRPSS shown in Figure 51, most improvements were seen in western Zambia and Zimbabwe in the lag 
months four to six mainly because these three lag months have better teleconnection linkages. 
Besides, the maximum and minimum temperature basically show analogous patterns as the ones 
already discussed for mean temperature. 
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Summary 

First, in terms of the relationship of ECVs with both indices over the SADC region, precipitation has a 
stronger signal in DJF and SON while temperature tends to correlate more in DJF and MAM. The fact 
that the stronger signals appear in the same seasons for both indices could hint that a window of 
opportunity may exist to improve the predictability of precipitation and temperature using either one 
of these indices in these seasons. Additionally, this association could be related to the link between 
Pacific and Atlantic Niño through the atmospheric circulation (Jia et al., 2019; Hounsou-Gbo et al., 
2020). However, the characterization of the teleconnection depends on the index and ECV. For 
instance, precipitation manifests a mixture of positive and negative correlations with Niño3.4 while 
temperature displays mainly positive correlations. ATL3, on the other hand, shows a mixture of 
positive and negative correlations with all ECVs in most of the months/seasons. In addition, the spatial 
patterns of the correlation of the ECVs also change with the index. Taking DJF precipitation as an 
example, for the Niño3.4 negative correlations exist at the southern half of the SADC and positive 
values at the north, whereas the opposite pattern is found for ATL3. Finally, the correlation changes 
its sign with the lag month of the index too (depending on the location). For example, the DJF and 
MAM temperature show a positive relationship with ATL3 at the zero-to-three lag months that 
changes to negative afterwards (up to eleven lag months). 

 

Regarding the improvement added by the teleconnection approach, there are more chances to see an 
enhancement for precipitation than temperature and correlations usually display a higher 
improvement than FRPSS. For example, when compared to SEAS5 lead four predictions, the increases 
in the correlation of the index-derived estimates of precipitation are seen in 10-25% of the entire 
domain in all seasons, but only five out of twelve seasons for temperature. As for FRPSS, only 4-6% of 
the region could see an improved FRPSS of precipitation when using ATL3 as a predictor (almost none 
for Niño3.4). On the contrary, FMA (DJF and MAM) temperature has higher FRPSSs in 14% (6-7%) of 
the area for Niño3.4 while only 2-3% for ATL3 (in DJF and NDJ only). The spatial distribution of the 
improvement highly depends on the seasons and variables, and it also changes with the lag month of 
the index and with the SEAS5 lead time comparison. 

 

As per the analysis discussed above, it has been shown that a seasonal prediction with higher skills 
could be generated in certain locations of the SADC area by using estimates from the teleconnection 
indices (although the results depend on varying factors). This is especially apparent when comparing 
the longer SEAS5 lead times with the use of concurrent or past observations of the indices in the linear 
regression models. In that sense, these regression models provide a way to increase the horizon of 
the predictions beyond the conventional seasonal forecasting horizons.  

 

5.2 ITCZ Teleconnection characterisation 

Background 

The seasonality of precipitation over most of Africa is arguable linked to the migration of the Tropical 
Rain Band (TRB) that is closely linked to large scale processes such as the Hadley circulation, through 
the Intertropical Convergence Zone (ITCZ)(Nicholson, 2009). Rainfall seasonality in Africa is subject to 
large interannual, decadal and multi-decadal variability that is responsible for the occurrence of 
regional droughts (Masih et al., 2014).  

 

Methodology 
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The variability of the TRB over Africa can be estimated by three indexes related to the position (P), the 
intensity (I) and the spread (S). These can be calculated on a meridional cross-section of monthly mean 
precipitation averaged over 20°–30°E and then by fitting a Gaussian function the cross-section (Nikulin 
and Hewitson, 2019).  

 

Crop production analysis  

Precipitation during the austral summer (DJF) is closely related to the TRB Intensity in Mozambique 
and Zambia, and to the TRB position and spread over South Africa and Botswana  (Nikulin and 
Hewitson, 2019). The TRB can be therefore considered a main feature that is relevant Southern Africa 
water availability, which is increasingly at risk because of climate change (Figure 52). 

 

 

 

Figure 52: Global estimation of the future decade when the worst climate events causing large 
maize losses in the past are becoming normal (Zampieri et al., 2019) under RCP8.5 scenario. 
Panel a show a median estimation, panel b shows the most optimistic one, panel c the most 

pessimistic. 

 

Over the Southern African countries, a large risk for maize crop is estimated with high confidence and 
very low uncertainty already soon (Figure 52). Over Southern Africa, a large increase of frequency of 
extreme events damaging maize is predicted before 2050 at last, more probably earlier. The analysis 
presented in Figure 52 strongly calls for action on adaptation because maize is a crop of paramount 
importance for food, feed, and labour in African countries (Figure 53). 
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Figure 53: Integrated stability analysis for maize production by the main SADC producers. The 

histogram shows the reference value of agricultural production related to maize in the recent 
decades (FAOSTAT data, www.fao.org/faostat/en/). The dots indicate the production stabilities 
of the individual countries computed by the annual production resilience indicator (Zampieri et 
al., 2020). The red line represents the stability increase when the productions of the countries 
are progressively considered. The colours of the bars indicate the correlation of each country 
production with the sum of the previous, sorted in decreasing order. The plot is produced with 

an open source software called ResiPy (Zampieri et al., 2021).   

Maize production over the Southern Africa Development Countries (SADC) and actually of overall 
Africa is dominated by South Africa, which is actually a producer of global importance (Zampieri et al., 
2019). Measured by the value of production (a FAOSTAT indicator), Tanzanian and Malawi maize 
productions are about one third of the Southern African one. However, being statistically 
independent, they largely contribute to the increase of the total stability of the maize SADC 
production. Mozambique and the other countries contribute less to the total resilience, but with a 
significant quantity anyway. 

Southern African agriculture, albeit not fully developed in terms of inputs such as fertilizers, pesticide 
and level of management compared to other countries in the middle latitude it is notably much more 
diversified (Figure 54). 

http://www.fao.org/faostat/en/
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Figure 54: ResiPy analysis like Figure 53, but conducted for the sum of SADC production of 
different crops, ranked in decreasing order of economic importance. 

 

Cassava and sugar cane production are of similar importance compared to maize (Figure 54). Indeed, 
in terms of economic output they surpass that of maize, and they are significantly more stable, i.e. 
they are characterized by comparatively smaller year-to-year variations. Potatoes, grapes, and other 
crops and fruits are present in more moderate entities, but they also contribute to raising the total 
stability of the system. 

The importance of large-scale features such as the TRB in determining the local water availability and, 
ultimately, drought for African crops is demonstrated by the correlation with the crop yield reported 
by the FAO (www.fao.org/faostat/en/) and represented in Figure 55.  

 

 

 

 

http://www.fao.org/faostat/en/
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a)     

 
b) 

c)

 
d) 

Figure 55: Number of monthly TRB related indicators (position, intensity and spread) that are 
significantly correlated with the yearly variations in national maize (a), total cereals (b), 

cassava (c) and sugar cane (d). The TRB is here computed using ERA5 monthly precipitation  

Albeit the TRB indicators are computed over Africa only, they can be significantly correlated, to a 
certain level, also to national crop production of non-African countries. This is because of the link of 
the TRB to the ITCZ, which is a global climate feature. Nevertheless, higher levels of correlation are 
found over Africa. These are quantified through the number of TRB indicators computed at the 
monthly scale that are significantly correlated with the annual crop production (Figure 55). For 
generality, for each production year, the analysis presented in Figure 55 considers a total of 3 
indicators (position, intensity and spread) for each month and for two consecutive years, because crop 
production could be recorded the year after in the FAOSTAT dataset and because the growing season 
in southern Africa happens at the end of the calendar year. A large number of significant matches for 
the SADC are found for maize (Figure 55a), which is known to be highly sensitive to climate variations 
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(Zampieri et al., 2019). The same holds for the sum of all cereals. Cassava and sugar cane are 
significantly linked to climate in a lesser number of countries. However, cassava shows a very strong 
climate (and therefore a greater climate related risk) sensitivity in Tanzania. Sugar cane shows a very 
strong sensitivity in Zambia. It is worth noticing that these rare lower estimates limited by the data 
quality. As discussed in other studies, the real links between crop production and climate variability 
could actually be stronger than those computed here (Zampieri et al., 2017).  

 

TRB seasonal forecasts 

Having demonstrated the importance of the water availability determined by the TRB position, 
intensity, and spread for the crops produced by the SADC, we computed a preliminary estimation of 
the skill of the seasonal forecasts provided by Copernicus in prediction the TRB position, intensity and 
spread (Figure 56, Figure 57, Figure 58).  

  

Figure 56: Ensemble mean linear correlation between the observed TRB intensity and that 
computed on the Copernicus seasonal forecast models (CMCC, DWD, ECMWF, Meteo France 
and Met Office) at different starting months (0=January, 11= December) and at different lead 
times. The reference observational dataset is the Rainfall Estimates from Rain Gauge and 

Satellite Observations (CHIRPS, Funk et al. 2016). 

 

Figure 57: Same as Figure 56 but for the TRB position. 
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Figure 58: Same as Figure 56, but for the TRB spread. 

 

The Copernicus seasonal forecast models available in the Climate Data Store (CDS) at the time this 
investigation was perform show some potential in predicting the main features of variability of the 
tropical rain band over Africa in key periods of the year well in advance. The determining skill will 
probably increase by considering all models at the same time. The probabilistic skill of the Copernicus 
models in predicting the monthly precipitation at the grid scale is also computed and is already 
available online together with operational seasonal forecast in the ASAP platform (ASAP - Seasonal 
Forecast (europa.eu)).  

 

5.3 A show case for Mozambique 

Background 

Mozambique is one of the African countries most exposed to climate-related risks (Mavume et al., 
2021), which is and will be exacerbated even more by climate change. Mozambique’s agricultural 
production is characterized by moderately low productivity of a wide selection of staple crops, a 
diverse variety of annual and perennial horticultural products, and cash crops (Silva and Matyas, 
2014). Rainfed agriculture, practiced by smallholder farmers, accounts for the vast majority of the 
cropped area, akin to other countries in the region. Maize and rice are the most widely grown crops 
in Mozambique and as of 2019 they account to more than 90% of the total cereal production 
(FAOSTAT, 2021). Climate variability and extremes have a profound influence on agricultural systems. 
Understanding their effects represents a necessary step to assess the resilience of agricultural systems 
to changing climate conditions as well as to develop adequate adaptation measures (Moore and 
Lobell, 2014). Large-scale atmospheric dynamics have a prominent role in driving the year-to-year 
variability in crop production by influencing the parameters that impact crop production. Thus, 
quantifying yield loss anomalies at large spatial scales and understanding their climatic drivers is a 
prerequisite to assess vulnerabilities and design adaptation measures to increase the resilience of food 
systems. 

Numerous studies have investigated the link between climate change and crop yields (e.g. Ceglar et 
al., 2016, 2017; Guimarães, et al, 2019; Salinger et al, 2020; Lesk, et al, 2021). Even though the 
relationship between large-scale patterns and crop yields has been widely studied in the past and 
highlighted connections between indices of climate variability and common atmospheric variables, 
few have addressed the role of large-scale atmospheric drivers on the variability of agricultural 
production, particularly on Africa. A more thorough understanding of the net country-level impact of 
recent large-scale climate trends would help to anticipate impacts of future climate changes, as well 
as to assess more accurately the recent, technologically driven, progresses in crop yields.  

 

https://mars.jrc.ec.europa.eu/asap/seasonal_forecast.php
https://mars.jrc.ec.europa.eu/asap/seasonal_forecast.php
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This is the reason why here we characterize influential large-scale climate drivers on crop production 
and investigate the impact of those drivers by exploring the relationship between large-scale indices 
of climatic drivers and cereal yield.  

 

Methodology and data 

Country level annual crop yields for maize and rice were obtained from the Food and Agriculture 
Organization (FAO) of the United Nations (FAOSTAT, 2021). Data from 1981 – 2019 has been used in 
this study. Daily gridded weather dataset from the AgERA5 data set, consisting of maximum air 
temperature, minimum air temperature, rainfall, and vapour pressure, were obtained from the 
European Copernicus Program (AgERA5, 2021). AgERA5 makes the ERA5 data available to users in the 
agricultural sector. The atmospheric and oceanic parameters, mean sea level pressure (MSLP), 850mb 
level meridional (u850) and zonal (v850) wind were obtained from ERA5, the fifth generation of the 
ECMWF reanalysis for the global climate and weather for the past 4 to 7 decades (Hersbach et al., 
2001).   

To properly identify climate effects on crop yield requires that “noise” from other factors to be 
removed. In general, correlating two trending variables often leads to correlations that are not causal. 
Hence the model estimates for climate effects rely on year-to-year variations in climate and yields, 
and not on common trends (Lobell et al., 2011). A simple linear regression model has been applied to 
de-trend the crop yield time series (Junyu Lu et al., 2017).  

Within the area of interest (latitude from 40°S to 40°N, and longitude from 5°W to 80°W), the Pearson 
product moment correlation analysis was used to explore the relationship between large-scale 
meteorological drivers and country-level crop yield variations. The target region within large-scale 
atmospheric circulation fields that drive the Mozambique's inter-annual yield variation was 
determined by computing the simultaneous correlation with respect to fields of de-trended crop 
yields and November-to-March average MSLP, 850 hPa meridional winds and zonal winds. Over the 
geographical area of interest, regions of significant influence, defined as the ones with an anomaly 
correlation coefficient greater than 20% with a 90% confidence level (i.e. p<0.1), were identified from 
the point-to-field correlation map. Points with a correlation lower than 20% were masked.  

To investigate the relationship and linkage between the time series for yield and climatic drivers and 
quantify the climate impact, we used a multiple linear regression model with crop yield as the 
response variable, and climate drivers as predictor variables.  

𝑌𝑖𝑒𝑙𝑑 ~ 𝑀𝑆𝐿𝑃 + 𝑈𝑤𝑖𝑛𝑑 + 𝑉𝑤𝑖𝑛𝑑 +  𝑅𝑎𝑖𝑛 + 𝑇𝑎𝑣𝑔  

While an empirical study cannot attribute directions of causality, it is certainly assumed that climate 
variations caused yield changes, and not vice versa (Kukal et al, 2018). The multiple linear regression 
(MLR) model was used to estimate the role of climate in recent yield trends. Assuming the observed 
trend in the climate fields is attributed to the anthropogenic effect (due to climate change), two yield 
estimations was performed using the MLR model, one using the actual observed climate fields (Yfactual) 
as predictors and a second one using the detrended climate fields (Ycounterfactual) as predictors. Then, 
the climate impact on crop yield is estimated by comparing the factual and counterfactual yield 
estimations: 

∆𝑌𝑐,𝑡 =
(𝑌𝑓𝑎𝑐𝑡𝑢𝑎𝑙,𝑐,𝑡 − 𝑌𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙,𝑐,𝑡)

∑2019
1981 𝑌𝑓𝑎𝑐𝑡𝑢𝑎𝑙,𝑐,1981:2019

 

where suffix t and c indicate the year and crop type, ΔY is the estimated yield impact Y factual is the 
estimated yield under the factual climate condition, Ycounterfactual is the estimated yield under the 
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counterfactual climate condition and Yfactual,1981:2019 is the estimated average yield over the historical 
period estimated using factual climate data.  

This approach was followed to identify the proportion of changes in yields due to climate trends 
relative to the historical average yield, and to assess whether the climate impact on yield was positive 
or negative. While an MLR model does not attempt to capture details of plant physiology or crop 
management, they do capture the net effect of the entire range of processes by which climate affects 
yields, including the effects of poorly modelled processes. Thus, such estimates of climate impacts can 
be viewed as an upper bound on the impacts of recent trends (Lobell and Field, 2007). 

Analysis of the cropping season 

The rainfall season in Mozambique lasts from October to May, though most rainfall is concentrated 
between November to April. The rainfed cropping season for major cereals covers November to May, 
since it depends on the rainy season.  Results indicate a decreasing tendency of monthly rainfall totals 
during November (planting month) and February (reproductive stage for the cereals) since 1981. The 
decreasing trend of the November rainfall totals may cause frequent erratic onset of the rainy season 
over time, which creates unfavourable conditions for sowing during the planting window. Results also 
indicate that the January rainfall totals have been increasing significantly during the last 40 years 
(Figure 59). In addition, during January, the number of very heavy rain days are increasing throughout 
Mozambique whereas light to medium rain days is decreasing. As a result of these observed trends, 
the rainy season has been becoming shorter, with an increased frequency of extreme events.  

  

Figure 59: Linear trend (1981 - 2020) of Mozambique averaged monthly rainfall totals (mm per 
year). 

The temperature anomaly during the crop season (Figure 60) shows a clear warming trend, which 
becomes more evident after 2002. It is also worth to notice, at some extent, a quasi-decadal variability 
in the growing season temperature that can be detected in the 5-year centred running average (black 
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line: for each year Y, the line shows the mean between Y-2 and Y+2 years), with lower relative values 
in 1989, 2003, and 2012.  

 

Figure 60: Standardized daily average temperature anomaly relative to 1981 - 2000: average 
over November to March. The black line shows the 5-year running mean. 

 

Large scale climatic drivers 

Mozambique's rainfall climatology is determined mainly by seasonal changes in large-scale circulation, 
part of which involves a series of variations: 

● Southward migration of the Inter-Tropical Convergence Zone (ITCZ),  
● Variation in the strength of Angola Low (AL),  
● Changes in the Mozambique Channel Trough (MCT), characterized by a low-pressure area 

over the central and southern Mozambique Channel, and  
● Variations in position and intensity of the Mascarene High (MH) pressure systems and 

perturbations in the associated southern hemisphere mid-latitude westerly circulation. 

Large-scale climatic drivers of Mozambique were analysed by simultaneous correlation with respect 
to de-trended fields of MSLP, 850mb meridional and zonal wind and linkage with country level yield 
was investigated for the November to March cropping period. The correlation map between country-
level yield and atmospheric variables (Figure 61) illustrates the features anticipating links between 
large-scale climatic drivers and yield. There is a negative MSLP signal in the northern Indian ocean 
including the Arabian Peninsula (10° N to 30° N, 50° E to 70° E; MSLP-index), an area dominated by 
Arabian high-pressure system which intensifies in strength and extent during this time of the year. 
There is a positive meridional wind signal over southern part of Africa (10° S to 18° S, 10° E to 20° E; 
u850-index). This region is dominated by Angola low which intensifies during this period (Crétat et al, 
2019; Barimalala et al. , 2020). There is a distinct negative surface zonal wind correlation in the region 
located south of Madagascar (30° S to 38° S, 23° E to 37° E; v850-index). 
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Figure 61: Correlation of continuous Mozambique yield anomalies: (1st column) Cereals, (2nd 
column) maize, (3rd column) rice, with simultaneous synoptic-scale meteorological drivers: (1st 

row) MSLP, (2nd row) U-wind @850 hPa, (3rd row) V-wind @850 hPa.Target area and key features 
are highlighted. 

 

The country level climate indices (Rain, Tavg and VPD), together with identified atmospheric indices 
(MSLP-index, u850-index, and v850-index) from the influence area that drives the Mozambique cereal 
yield was used to describe the influences of large-scale atmospheric drivers on year-to-year variations 
of country-level yield progress. There is a strong association between climatic drivers and 
Mozambique's crop yield. An intensification of the high-pressure system over the Arabian 
subcontinent (as indicated, e.g., by the MSLP-index) leads to reduced crop yield. On the other hand, 
enhanced meridional winds over southern Africa (as indicated by the u850-index) and high seasonal 
rainfall totals tend to be associated with increased cereal yield values. Higher values of daily mean 
temperature, which leads to larger values of Vapour Pressure Deficit and weaker zonal wind over 
south of Madagascar (v850-index) result a reduced cereal yield gains (Figure 62).  

 

 

 

 



D3.1 Climate Projections Analysis over the SADC region 

71 

 

FOCUS-Africa Project – Full-value chain Optimised Climate User-centric Services for Southern Africa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62: Relationship between crop yield (kg ha-1) and climatic drivers. Each decade is 
shown with a different colour and shape, indicating that the relationships do not appear to 

change through time. 

 

Maize and rice are widely grown crops in Mozambique. Based on the 2019 statistic from FAOSTAT 
(https://www.fao.org/faostat/en/#data/QCL), the two crops make up more than 90% of the total 
cereal production. Yields of total cereals and grain maize (S-3) have increased in the last 40 year, 
whereas rice yields are reduced, although a levelling off can be observed after 2015 and from 1981 to 
1986. Following the method described by Lobell et al. (2007, 2011) and Iizumi et al. (2018), the role of 

 

A) 

b) 

https://www.fao.org/faostat/en/#data/QCL
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large-scale drivers in recent yield trends was investigated. We used a multiple linear regression model 
with crop yield as the response variable, and climate drivers as predictor variables to quantify the 
climate impact. The estimated impacts of climatic drivers on yield trends were statistically significant 
for cereal crops since 1981. These inferred impacts reflect only the influences of large-scale climatic 
drivers that were captured by the MLR models. Negative yield impacts since 2001 indicate that recent 
climate trends have suppressed Mozambique’s cereal yield progress and need to be addressed 
through adaptation measures. The estimated average yield impacts in the historical period (1981 – 
2019) due to historical climate change, relative to a counterfactual climate condition, observed to be 
negative for all major crops (Figure 63). rice appears to be more affected by climate change than 
maize. The MLR model estimates average yield loss of 20% for rice, 8% for maize and 9% for major 
cereals over the historical period.  

 

 

Figure 63: Estimated impacts of large-scale climate drivers on average yields for 1981–2019. 
Positive values indicate that the climate has increased the yields, and negative values indicate 

that climate has decreased the yields relative to what would have occurred without the 
anthropogenic effect. 

 

Summary 

Rainfall totals during the beginning and end of the season (November, February and March) have been 
decreasing since 1981, while rainfall totals during December and January are increasing. In other 
words, the rainfall season has been shortening, with more extreme precipitation events concentrated 
in Dec-Jan. The seasonal average temperature of the crop season has also been warming significantly 
from 1981 to 2020. The warming has been more pronounced and consistent after 2002. 

Interannual yield anomalies are often linked to variations in the large-scale systems that control the 
regional climate with quasi-periodic fluctuations. The results suggest that recent large-scale climate 
trends, attribute to human activity, have a negative impact on the countries yield progress. The impact 
is significant since 2002. On average, since 1981, yield of maize and rice is reduced by 20% and rice 8% 
due to climate change alone.  
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The estimated climate impact in this study is limited to simulate yield responses effectively, when 
cropping areas shift and when change in agricultural policies are affecting the cultural cropping 
practice at large scale. Those changes will introduce an artificial temporary trend to the crop 
production progress and bias the regression estimator used to detrend yield to remove non-climatic 
factors.  However, one can be confident that, the historical large-scale climate drivers and cereal yield 
relationships indicate that, at country scale, warming from 2002 very likely offset some of the cereal 
yield gains from technological advances. One of the most effective ways to overcome this 
anthropogenic warming effect will likely come from biology (Raza et al., 2019; Gomez-Zavaglia, et al., 
2020). Plant breeding and genetic engineering may lead to different crops and crop varieties that 
produce higher yields and are more resilient to extreme temperature and moisture stress. More 
specifically, effective adaptation strategies for the agriculture sector in areas affected by climate 
change, such as Mozambique, could be developed by combining studies like this one, assessing how 
climate variability has been affecting crop yields, with studies that identify which crop varieties can 
adapt better to the ongoing and project climate change and with climate change projections (IPCC 
2021).  

 

6 Conclusion 

With the deployment of operational centres around the globe and continued advances in climate 
modelling, in combination with user demand for climate services, predictions of the near-term climate 
have become more robust. Decadal prediction systems have shown levels of skill that are comparable 
to predictions in operational seasonal forecasting particularly for surface air temperature and to 
precipitation. In addition to these, predictions at this timescale also provide skilful information for the 
frequency of extreme events such as heatwaves and tropical storms. Of course, the main difference 
between the seasonal and decadal predictions is in the temporal resolution which would influence the 
applicability of such products depending on the needs of different sectors. As the skill levels of near-
term climate predictions indicate, there is considerable potential for several sectors to benefit from 
such predictions. 

In the context of SADC, SARCOF and SWIOCOF are using a series of predictors over the region for 
seasonal forecasting from different data sources and models. Over the years, ENSO, IOD, SIOD, 
Benguela Nino have been demonstrated to drive rainfall variability across southern Africa. Current 
statistical tools have useful predictability usually limited to years with strong ENSO signal. Statistical 
tools available carry quite well the ENSO signal and perform better in the ENSO years.  

The evaluations of skill in the AMIP-simulations of inter-annual variability in the Southern Hemisphere 
confirm the results from operational seasonal forecasting, namely that a pronounced seasonal cycle 
in predictive skill exists over the Southern Hemisphere continents in the subtropics, with peak skill in 
summer in association with ENSO forcing. However, the seasonal prediction of winter rainfall and 
underpinning circulation anomalies need to focus on improved systems of initialisation and data 
assimilation, rather on sources of predictability, since for these regions the latter is insignificant 
compared to the dominating role of internal variability. 

 

In SADC, drought is a multi‐faceted phenomenon that occurs across a range of temporal and spatial 
scales and is experienced across a range of societal sectors that are dependent on climate and water 
resources. We investigated the observed interannual to multi-decadal variability and changes of 
droughts and other environmental conditions that directly affect rainfall, streamflow, and river 
discharges across the Orange River basin as it is the largest river system in southern Africa. This 
showed that the interannual and multi-decadal drought variability over the Orange River basins is 
largely explained by the natural variability throughout the 20th Century. However, the worsening of 
water stress due to loss from surface water, drainage systems, and other covers is likely associated 
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with temperature amplification. The impact of climate change on the future moisture budget and 
surface water resources may arise from the continental scale loss of water due to potential 
evapotranspiration and the shift of rainfall bearing systems, which seemingly tends to affect mostly 
the southern Africa region. However, the impact of climate change on rainfall is complex and nonlinear 
in nature and its signature is likely felt with a drastic shift on rainfall bearing systems.  

We then focused on the analysis of the ability of seasonal forecasts to describe energy transfer in the 

atmosphere, applying spectral analysis to study the winter atmospheric variability at the mid-latitudes 

of the Southern Hemisphere from 1993 to 2020. This showed that this winter variability in the 

southern hemisphere can be explained mainly by the eastward propagation of the baroclinic waves. 

Therefore, the problems of seasonal forecasting in correctly predicting baroclinic activity may be 

directly related to the low skill values of precipitation predictions observed in the seasonal forecast 

demonstrating the importance of baroclinic activity in understanding the role of rainfall and 

temperature variability in seasonal forecast data. FOCUS-Africa case studies can thus directly benefit 

from the application of this approach to better understand how seasonal forecast precipitation and 

temperature fields can be corrected to account for this observed variability. 

In a show case, we also investigated the linkage between low-level moisture fluxes and rainfall 
variability over the Lake Malawi catchment, towards potential implications to rainfall predictability at 
seasonal time scales. The analyses indicate that low level moisture transport plays an important role 
in rainfall over the Lake Malawi catchment, and its dynamics are linked to seasonal and interannual 
rainfall variability. The strength of the Malawi Low Level Jet is, however, inversely proportional to 
rainfall over the Lake Malawi catchment during the core of the rainy season but the relationship is 
inverse during the rest of the year. These relationships clearly indicate the importance of the dynamics 
of the low-level moisture fluxes, and, of the interactions between conditions facilitating westerly and 
easterly moisture flux, on the rainfall dynamics over the Lake Malawi catchment.  

 

Concerning the exploration of large-scale processes, we investigated the prospects of improving 
seasonal predictions of ECVs in SADC by means of the characterization of teleconnection links with 
large scale patterns like El Niño Southern Oscillation (ENSO). First, in terms of the relationship of ECVs 
with both indices over the SADC region, precipitation has a stronger signal in DJF and SON while 
temperature tends to correlate more in DJF and MAM. The fact that the stronger signals appear in the 
same seasons for both indices could hint that a window of opportunity may exist to improve the 
predictability of precipitation and temperature using either one of these indices in these seasons. 
Therefore,  a seasonal prediction with higher skills could be generated in certain locations of the SADC 
area by using estimates from the teleconnection indices, especially for precipitation using linear 
regression models. In that sense, these models provide a way to even increase the predictions range 
beyond the conventional seasonal forecasting horizons.  

Furthermore, the seasonality of precipitation over most of Africa is arguable linked to the migration 
of the Tropical Rain Band that is closely linked to large scale processes such as the Hadley circulation 
through the ITCZ.  We demonstrated that the importance of the water availability is determined by 
the TRB position, intensity, and spread for the crops. We also showed that the Copernicus seasonal 
forecast models show some potential in predicting the main features of variability of this tropical rain 
band over Africa in key periods of the year well in advance.  

In another showcase, we characterized the influential large-scale climate drivers on crop production 
in Mozambique and investigated the impact of those drivers by exploring the relationship between 
large-scale indices of climatic drivers and cereal yield. This shows that the rainfall season has been 
shortening with totals in November, February and March decreasing since 1981 and totals during 
December and January increasing. The seasonal average temperature of the crop season has also been 
warming significantly from 1981 to 2020. The warming has been more pronounced and consistent 
after 2002. Interannual yield anomalies are often linked to variations in the large-scale systems that 
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control the regional climate with quasi-periodic fluctuations. The results suggest that recent large-
scale climate trends, attribute to human activity, have a negative impact on the countries yield 
progress. The impact is significant since 2002. On average, since 1981, yield of maize and rice is 
reduced by 20% and rice 8% due to climate change alone.  
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