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: FOCUS-Africa — Full-value chain Optimised Climate User-centric Services for Southern :
: Africa — is developing sustainable tailored climate services in the Southern African :
: Development Community (SADC) region for four sectors: agriculture and food security, :
water, energy and infrastructure. :

- It will pilot eight case studies in six countries involving a wide range of end-uses to illustrate
: how the application of new climate forecasts, projections, resources from Copernicus, :
: GFCS and other relevant products can maximise socio-economic benefits in the Southern
Africa region and potentially in the whole of Africa. :

Led by WMO, it gathers 14 partners across Africa and Europe jointly committed to addressing the
: recurring sustainability and exploitation challenge of climate services in Africa over a period of 48 :

- months.

For more information visit; www.focus-africaproject.eu
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Executive Summary

This report accounts for deliverable 4.1, 'Report on the verification of seasonal forecasts and the
characterization of climate projections and decadal predictions”. It contains the work performed in
WP4 tasks 4.1, 'Seasonal forecast quality assessment' and 4.2, 'Climate projections and decadal
assessment’, during the period between M1 and M24. It is mainly centered on the methodologies
implemented to postprocess and verify the seasonal, decadal, and climate projection data that will be
used in the co-development of climate services for the FOCUS-Africa case studies.

The first part of this deliverable focuses on task 4.1, 'Seasonal forecast quality assessment', and it
contains: (i) the verification of raw and bias corrected ECVs from the seasonal forecasting models
included in the C3S Data Store as well as a comparison of different bias correction approaches; (ii) the
verification of a specifically tailored bias correction method for extreme ECV values in the South
African Development Community (SADC); (iii) the review of current seasonal methodology at SARCOF
and SIOCOF as part of RCOF session reports (developed in depth in deliverable 7.1); and (iv) the review
on the available products for the onset of the rainy season in Tanzania.

The second part includes the results from task 4.2: 'Climate projections and decadal assessment'. It
reports the (i) assessment of decadal skill on ECVs and of the impact of different bias correction
approaches on decadal predictions; (ii) the assessment of projection skills with a special focus on
variables related to cereals and legume cropping; (iii) climate projections selection for case studies by
comparing high-resolution RCM data with the GCMs in synergy with WP3; and (iv) statistical analysis
of the CMIP6 climate projections with a special focus on extremes considering CORDEX-core regions
and specific ensembles.

The overall analysis of the three climate prediction time scales (seasonal, decadal, and climate
projection) through different post-processing and verification strategies (i.e. bias correction) provides
athorough characterization of the current landscape of available approaches for the pilot case studies.
Additionally, this review provides the needed foothold to move forward and undertake future tasks
4.3, 'Implementation of multi-model and downscaling for seasonal forecasts', 4.4, 'Implementation of
multi-model and downscaling for climate projections and decadal predictions', and 4.5, 'Derived
products using seasonal forecasts, climate projections and / or decadal predictions'. In this way it
completes the first stage towards the provision of the most actionable information for the FOCUS-
Africa case studies.

Keywords

Seasonal forecast, decadal predictions, climate projections, bias correction, quality assessment
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1 Introduction

FOCUS-Africa aims to create innovative and sustainable climate services in four sectors of the
Southern African Development Community (SADC): agriculture, food security, energy, and
infrastructure. In this framework, Work Package 4 (WP4) seeks to promote the systematic use of
advanced methods for the integration of seasonal, decadal and climate projections in the co-
development of the eight pilot climate services that are being built within the project. These methods
comprise topics such as skill assessment, downscaling, bias adjustment as well as multi-model
construction and indicator tailoring. More specifically, the actions included in this deliverable involve
the WP4 objectives: (i) improvement of the understanding of the seasonal predictability of the
Essential Climate Variables, ECV (ii) improvement of the forecast performance through the application
of bias correction approaches and, (iii) assessment of the long-term influences of climate in the areas
of the case studies.

These goals have been fulfilled through the work performed within tasks 4.1 ('Seasonal forecast
quality assessment') and 4.2 ('Climate projections and decadal assessment'). Regarding task 4.1, the
estimation of the seasonal forecast quality based on past performance and verification metrics allows
guantifying its potential benefit compared with other approaches. This is achieved by systematically
collating the forecasts to a reference to assess their overall matching. Additionally, since the forecast
systems are affected by biases, a range of methods have been applied to obtain similar statistical
properties as found in the reference variables. This framework seeks to provide end-users with the
information needed to understand which strategies would better fit their interests (important in WP5,
WP6 and WP7). In this regard, with the objective of providing information that could be
operationalised in the future, the seasonal prediction systems employed come from the Copernicus
Climate Data Store (CCDS).

Moving forward to task 4.2, decadal and climate time-scales offer a unique framework for end-user
exploration of the possible future evolutions of the climate systems. In this task, simulations from the
state-of-the-art Coupled Model Intercomparison Project Phase 6 (CMIP6 and available CORDEX data)
have been assessed and analysed to establish the potential changes that the FOCUS-Africa areas will
experience in the coming decades. This assessment has been carried out in coordination with the
complementary actions from WP3. Moreover, the bias correction methods that could be applied at
these time-scales have also been evaluated in views of their potential application in the case studies.

In this framework, the organisation of the deliverable is as follows: after the introduction, three more
sections account for the outcomes obtained for each of the three types of climate information
available: seasonal forecasts, decadal predictions and climate projections. Each time-scale includes
the reporting of the different subtasks carried out in 4.1 and 4.2. Finally, the conclusions section
summarizes the results obtained.
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2 Seasonal forecasts

2.1  Verification of raw and bias adjusted seasonal forecasts

Seasonal predictions have received increasing attention from a range of sectors such as agriculture
(Vajda and Hyvérinen, 2020), renewable energy (Lledé et al., 2019) and water resource management
(Marcos et al., 2017) not only because of its economic potential benefit but also because they could
be an advanced support tool to adapt to weather extremes and climate change (Eccel et al., 2016).

The timescale of seasonal predictions ranges between one month and one year (Luo et al., 2011). The
predictability at these forecast horizons is linked with both the lower-boundary ocean/land variability
(signal) and the variance related to the dynamics within the atmosphere (noise), and it largely comes
from the El Nifio-Southern Oscillation (ENSO) as well as other slow-evolving phenomena (Doblas-
Reyes et al., 2013). The skill level of seasonal prediction systems is one of the key factors affecting
users’ resolution to include them in their decision-making workflows. Therefore, a systematic
evaluation of the predictive performance of the current state-of-the-art seasonal forecasting systems
has been undertaken (in raw and bias-corrected conditions) and is described in the following sections.

2.1.1 Data and methods

The monthly predictions of Essential Climate Variables, ECV (2-m mean, maximum and minimum
temperatures and total precipitation), from eight forecasting systems from the Copernicus Climate
Change Service (C3S) have been downloaded and analysed at monthly time-scale (
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). Their acronyms and
characteristics are reported in
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Table 1. The acronyms consist of the combination of the name of the forecasting centre and the
version number of the system used. In addition to the monthly time-frame, these variables have been
also aggregated to seasonal level (i.e., three-month average or sum).

In this work, five different calibration techniques have been applied with the aim of correcting the
main types of model's biases. Besides, the quality of the calibrated predictions has been compared to
that of the raw predictions in order to assess the impact of each correction. The five calibration
methods are the following: 'bias' (which corrects only the mean bias; Torralba et al., 2017), 'evmos'
(which applies a variance inflation technique to ensure the correspondence of the variance between
the predictions and reference data); Van Schaeybroeck and Vannitsem, 2011), ‘'mse_min' (which
corrects the mean bias, the overall forecast variance and the ensemble spread by minimising a
constrained mean-squared error; Doblas-Reyes et al., 2005), ‘crps_min' (which corrects the mean bias,
the overall forecast variance and the ensemble spread while minimising the continuous ranked
probability score; Van Schaeybroeck and Vannitsem, 2015) and 'rpc_based' (which adjusts the forecast
variance ensuring that the ratio of predictable components is equal to one; Eade et al. 2014). All the
calibration methods are implemented in the CSTools R-package (Pérez-Zandn et al., 2022) and have
the option to be applied in leave-one-out cross-validation mode (i.e., without using information of the
time step that is being calibrated, as it would be done in a real-time context).
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Table 1: The eight forecasting systems in the Copernicus Climate Change Service (C3S) and their original
configurations. The acronym consists of the combination of the name of the forecasting centre and the version
number of the forecasting system used. The verification has been conducted at the coarsest grid (i.e., the JMA-
2 resolution at 2.5°) for the common period, 1993-2016, for all the twelve start dates (i.e., the first day of each
month). All the available ensemble members of each individual system have been used. Please note that only
the years from 1994 to 2016 have been used for the predictions initialised in January because of the lack of
January’s predictions in 1993 for UKMO-600.

Forecasting Forecasting iR Hindcast Horizontal
Acronym system ensemble . . Reference
centre . period resolution
name size
ECMWF-5 SEASS ECMWF 25 1981-2016 1°ox1e | Johnsonetal
(2019)
MeteoFrance- s o 1o Voldoire et al.
7 System 7 Météo-France 25 1993-2018 1°x1 (2019)
R . Takaya et al.
IMA-2 CPS2 IMA 10 1993-2016 2.5°%x25 (2018)
ECCC-2 CanCM4i ECCC 10 1993-2020 1°x1° Merryfield et
al. (2013)
o o Saha et al.
NCEP-2 CFSv2 NCEP 20 1993-2016 1°x1 (2014)
] o e Williams et al.
UKMO-600 GloSeab UK MetOffice 28 1993-2016 1°x1 (2018)
o e Stevens et al.
DWD-21 GCFS2.1 DWD 30 1993-2019 1°x1
(2013)
CMCC-35 SPS3.5 CMCC 40 1993-2016 1°x1° G”?z'g'zgt) al.

Due to the varying configurations of the systems included in
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Table 1, the verification process over the Southern African Development Community (SADC) has
followed these steps:

1. The horizontal resolutions for all the predicted and reference data sets have been upscaled to
the coarsest grid (i.e.,, the JMA-2 at 2.5°), whenever the resolution was finer, with a
conservative interpolation method.

2. Although some systems have more years, the common period 1993-2016 has been used for
the verification (please note that the predictions initialised in January take into account the
years from 1994 onwards because there is no prediction for January of the year 1993 for the
system UKMO-600).

3. Allthe available ensemble members have been used for each individual system.

4. The minimum common number of forecast months for all the systems is six although there
are seven months for the ECMWEF-5 prediction. Consequently, the lead times for all the twelve
start dates (i.e., the first days of each month) range from 0-3 and 0-5 for the seasonal and
monthly predictions, respectively.

5. Lastly, the verification metrics that have been systematically computed over each grid point
include the mean Bias, the Mean Absolute Error (MAE), the Anomaly Correlation Coefficient
(ACC; Wilks, 2011), the Brier Skill Scores (10 and 90) and the fair Ranked Probability Skill Score
(fRPSS; Wilks, 2011; Ferro, 2014) based on the tercile equiprobable categories. Besides, the
same two-sided t-test and the Random Walk test have been applied to obtain the statistical
significance of ACC and fRPSS. In all cases, the reference data set used is the ECMWF ERA5S
reanalysis (Hersbach et al., 2020) and the benchmark comparison for all the skill scores, the
observed climatology.

2.1.2 Results

The verification process has generated thousands of figures. All of them are available to the
consortium partners through a R Shiny App (https://earth.bsc.es/shiny/FOCUS-Africa/). Thus, this
section will only offer the analysis of one season and metric (mainly) as an example: JFM fRPSS for 2-

m air temperature for the start date of January (0101, hereafter). Hence, the forecast quality
measured with the fRPSS for the tercile categories of the seasonal (3-month average) predictions for
this season and start date is described in the next section. Whenever the fRPSS is positive, the user is
recommended to use the prediction rather than the historical climatology. Conversely, the latter
should be used if negative fRPSS is obtained.

The quality of probabilistic forecasts of the seasonal mean of JFM 2-m air temperature for the start
date 0101 (first of January) measured with the fRPSS shows varying performances that depend on
many factors such as the forecasting system considered and the calibration method applied (as shown
in Figure 1). In general, the ECMWEF-5 and MeteoFrance-7, regardless of the calibration method
applied, show higher skills over the central and central-north areas of the SADC than the other
systems. As for the effect of the calibration method applied, the skills for the mse_min and crps_min
calibration modes are more similar and usually better when compared to the other methods.
Additionally, it is worth noting that for this metric and lead time, almost all the raw predictions
outperform the historical climatology over the region.
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fRPSS | tas | season | start date:0101 | lead time:0 | Refernce: ERA5(1993-2016)
evmos

UKMO-600 MeteoFrance-7 ECMWEF-5

DWD-21

CMCC-35

NCEP-2

JMA-2

ECCC-2

0

Figure 1: Fair Ranked Probability Skill Scores of the raw and bias-adjusted (column-wise) seasonal predictions of
2-m temperature for the eight C3S forecasting systems (row-wise) for the start date 0101 (first of January) and
lead time zero (i.e., JFM mean) for the period from 1994-2016 (the reference data set is the ERA5 reanalysis).

FOCUS-Africa Project — Full-value chain Optimised Climate User-centric Services for Southern Africa. 20



OCUS-AFRICA Ed

ytllilil'

Regarding which approach works better for each grid point, the raw predictions from the eight
systems (the ‘RAW’ column in Figure 1) are compared in Figure 2, where only the system with the
highest fRPSS is shown over each grid point of the map. In this case, the ECMWF-5 outperforms the
other systems mainly in the southern half of the SADC. Conversely, in the northern regions, the
MeteoFrance-7, ECCC-2 and UKMO-600 show a scattered pattern of improvement.

The recommended forecacsting system | fRPSS | tas | season | RAW
start date:0101 | lead time:0 | Reference ERAS5(1993-2016)

05

405

ECMWF-5 MeteoFrance-7  UKMO-600 DwD-21 CMCC-35 NCEP-2 Ma2 ECCC-2

bW I e W I

0 04 08 0 04 08 O 04 08 O 04 0B 0 04 0.8 0 04 08 0 04 08 0 04 08

Figure 2: The forecasting system with the highest Fair Ranked Probability Skill Scores over each grid point for the
raw seasonal prediction of 2-m temperature for the start date 0101 and lead time zero (i.e., JFM mean) for the
period from 1994-2016 (the reference data set is the ERAS reanalysis).

Regarding the effect of applying bias adjusting methods on the skill metric in each system, Figure 3
shows the ‘recommended’ method for the ECMWF-5 and JMA-2 systems as examples (from the first
and seventh rows in Figure 1). In this case, only the ‘rpc-based’ method is able to outperform the raw
predictions in some areas of both systems. Note that the influence of the application of the methods
varies with many factors such as the system, season, etc.
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The recommended callbration method | fRPSS | tas | season | ECMWF-5 The recommended calibration method | fRPSS | tas | season | JMA-2
start date:0101 | lead time:0 | Reference: ERAS{1993-2016) start date:0101 | lead time:0 | Reference: ERA5[1993 2016}

206 ace BOE [ 206 ace BOE

bias evmos mse_min crps_min rpc-based bias evmos mse_min crps_min rpc-based
IIII BN JENE gEen U_. I_- |||l BE JENN JERN R e
0 04 0B 0 04 08 0 04 08 0 04 0.8 O 04 0.8 0 04 08 0 04 0.8 0 04 08 0 04 08 O 04 0.8 0O 04 08 0 04 08

Figure 3: The bias adjusting method with the highest Fair Ranked Probability Skill Scores (fRPSS) over each grid
point for the (left) ECMWEF-5 and (right) JMA-2 seasonal predictions of 2-m temperature for the start date 0101
and lead time zero (i.e., JFM mean) for the period from 1994-2016 (the reference data set is the ERA5 reanalysis).

One of the advantages of having multiple forecasts available for the users is that even if one region
shows poor performance in one system, it might still show good results with another one. For
example, the aforementioned ‘better’ performers (ECMWEF-5) have limited/insignificant skills over
Tanzania where, conversely, JIMA-2 and ECCC-2 display higher and significant skills (see the
corresponding rows in Figure 1 and/or Tanzania in Figure 2). In terms of the selection of the calibration
methods, its influences on the skill metric of interest could vary with not only the method itself but
also the systems applied. For instance, the spatial pattern of the fRPSS shown in Figure 1 remains
almost the same for the systems ECMWF-5, MeteoFrance-7 and CMCC-35. However, DWD-21, NCEP-
2 and JMA-2 show at least two patterns: one for the ‘bias’ and ‘evmos’ modes and another for the
‘mse_min’ and ‘crps_min’ (see the corresponding columns). As such, for each grid point, one
recommended strategy’ (i.e system-method pair) could be selected from the 48 maps analogous to
the ones displayed in Figure 1 (i.e., eight forecasting systems + raw plus five calibration modes) based
on the statistic of interest for each start date, lead time and variable.

To better visualise the ‘recommended strategy’ over the SADC, Figure 1 can be summarised into
Figure 4 where there is only one strategy with the highest skill metric (e.g., fRPSS in this case) shown
over each grid point. As for the legend, each forecasting system uses one ‘leading’ colour with different
tones: green for ECMWE-5, purple for MeteoFrance-7, orange for UKMO-600, blue for DWD-21, red
for CMCC-35, brown for NCEP-2, pink for JIMA-2 and grey for ECCC-2. Furthermore, the six gradients
of each main colour represent the six post processing approaches: ‘RAW’, ‘bias’, ‘evmos’, ‘mse_min’,
‘crps_min’ and ‘rpc-based’ (from darker to lighter shades).

For JFM 2-m air temperature prediction, the ECMWF-5 raw prediction shows the highest fRPSS over
more grid cells in the southern and north-eastern SADC. The ‘RAW’ and ‘rpc-based’ predictions from
the MeteoFrance-7 and ECCC-2 systems, on the other hand, can be found over the northwestern and
central-northern regions, with the remaining strategies showing only in scattered grid points.
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Figure 4: The recommended strategy (i.e., the system-method pair with the highest fRPSS) for the seasonal
predictions of 2-m temperature for the start date 0101 with the lead time zero over the 1994-2016 period. The
reference data set used is the ECMWF ERAS reanalysis. In the legend, each forecasting system uses one main
colour: green for ECMWEF-5, purple for MeteoFrance-7, orange for UKMO-600, blue for DWD-21, red for CMCC-
35, brown for NCEP-2, pink for JMA-2 and grey for ECCC-2. The six gradients of each main colour represent the
six calibration modes: ‘RAW’, ‘bias’, ‘evmos’, ‘mse_min’, ‘crps_min’ and ‘rpc-based’ from dark to light.

In Figure 4 the spatial distribution for one lead time of one skill metric can be observed. However, the
recommended ‘strategy’ may vary with lead times and/or metrics. Therefore, Figure 4 could be further
summarised in a pie chart by computing the percentages of the grid points for the ‘recommended
performers’ over the entire SADC. Although the spatial pattern would not be available in the pie chart,
the variability of the percentages for all the five skill metrics at different lead times could still be
obtained. Therefore, Figure 5 depicts the shares of the recommended strategies for all metrics
(column-wise, ACC, BrierSS10, BrierSS90, MAE and fRPSS from left to right) and four lead times from
zero to three (row wise) for the same predictions of JFM 2-m air temperature.

For all skill metrics at the lead time zero (the top row), when looking at the shares of each forecasting
system (regardless of the calibration method), the ECMWEF-5 is the predominant performer over
around a quarter (for BrierSS90) to a half (for ACC) of the whole SADC. Moreover, its dominance
basically remained throughout all the lead times for all skill metrics except for BrierSS10 whose
percentage decreased to about ten at lead time three. Thus, a good level of skills (except for BrierSS10)
can be expected when using raw and bias-adjusted ECMWEF-5 predictions for the JFM 2-m air
temperature predictions (start date 0101) over widespread areas of the SADC.

In fact, the use and selection of the calibration methods mainly depend on the skill metrics of interest.
For example, applying a calibration method barely increased the ACC because almost only the darkest
colors could be seen for each system (see the first column). However, for BrierSS10, BrierSS90 and
fRPSS, some lighter colors begin to show in the charts. These increases in the percentages of the bias
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adjusted predictions hint at the added value of the calibration method applied. Regarding the MAE, it
shows the widest spectrum of each main color especially at lead time three. Hence, in this case it is
more advisable to apply a bias correction method. Finally, considering the variability of performance
of the forecasting systems with lead times, it is worth noting here that NCEP-2 (ECCC-2) shows a
marked improvement with the lead time, increasing from 5-6% to around 20% for BrierSS90
(BrierSS10).

Percentages of the strategies | tas | season
start date: 0101 | reference: ERA5(1994-2016)
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Figure 5: Percentages of the grid points for the recommended strategies (see the legend) over the entire SADC
for the prediction of JFM 2-m air temperature for the start date 0101 based on the corresponding skill metrics
(column-wise, ACC, BrierSS10, BrierSS90, MAE and fRPSS from left to right) for the period from 1994-2016. The
lead times range from zero to three by rows (top to bottom). In the legend, each forecasting system uses one
main colour: green for ECMWEF-5, purple for MeteoFrance-7, orange for UKMO-600, blue for DWD-21, red for
CMCC-35, brown for NCEP-2, pink for JMA-2 and grey for ECCC-2. The six gradients of each main colour represent
the six calibration modes: ‘RAW’, ‘bias’, ‘evmos’, ‘mse_min’, ‘crps_min’ and ‘rpc-based’ from dark to light. The
numbers on the labels of the ‘pies’ represent the percentages of the corresponding colours (strategies). To make

the figure tidy, the labels of the percentages with fewer than ten grid points were removed.
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2.2 Bias correction of extremes in seasonal forecasts

The raw output of regional and global climate models can be immediately used, without any further
processing, to analyse long-term tendencies (e.g. decadal time scale and beyond) and shorter term
anomalies (e.g. seasonal to decadal time scale). However, using climate model outputs for impact
studies in any sector of human activities (agriculture, energy, health, safety, infrastructures etc.)
requires a preliminary processing to remove any systematic error coming from the model. Very often,
impact models describe processes of a different nature which depend on specific critical threshold
linked to well defined numerical values of environmental parameters. Examples include the modelling
of biological systems, including agronomic models or models for the diffusion of pests and diseases,
or the modelling of landslides and flash floods.

Bias correction algorithms are specifically designed to remove systematic model errors and provide
an effective interface between climate and impact models. A systematic error is a known artefact of
a numerical climate model, which is produced by some undefined mechanism related to the complex
nature of the model itself, such as the interaction between the different components of a climate
model, or the use of approximations to model the physics of fundamental processes. Systematic errors
entail the unrealistic constants drifts of climate variables (e.g. temperature), which generally requires
a simple removal of the cumulated difference (delta) between model and observations, or the
misrepresentation of the statistical distribution of climate variables, that can be cured by remapping
the model output to some reference statistical distribution. More sophisticated bias correction
algorithms may impose other important properties to the model output such as the constraint to
specific spatial patterns (Maraun and Widmann, 2018). Another class of bias correction methods
ensure the correct interdependence of related climate variables, such as temperature and
precipitation, in order to retain the physical coherence that gets lost if the variables are treated
separately (e.g Cannon et al., 2016 and Vrac, 2018).

The specific challenge of this work is to design a bias correction method that provides an extrapolation
of extreme temperature and rainfall events, usually localised in their geographical extent. Indeed, one
of the limitations of bias correction methods based on quantile mapping is that they are not good at
dealing with the tails of Cumulative Distribution Functions (CDFs) (White and Toumi, 2013). Therefore,
the proposed approach consists of conceptually extending one of the classic quantile mapping
methods by improving the description of the tail of the distribution. The methodology developed for
this study is based on fitting a parametric transformation to the quantile-quantile relation of observed
and modelled values over the core of the distribution. For the tail of the distribution, the quantile-
qguantile relation of the modelled data is remapped to the appropriate generalised extreme value
(GEV) distribution.

2.2.1 Data and methods

The methodology proposed in this work is used to perform the bias correction of extreme 2-m
temperature and total precipitation for three forecasting systems: ECMWF, Météo-France and DWD.
The meaning of their acronyms, as well as their characteristics, are listed in
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Table 1. The analysis has been performed over the Southern African Development Community (SADC)
during the 1993-2020 period.

The proposed technique is the combination of two approaches: quantile mapping (QM) and a
generalized extreme value distribution (GEV) fitting. QM is applied to the central part of the statistical
distribution whereas the GEV is applied to the tails of the distribution (i.e., for the extremes). Since
there is no special library in Python that does this work, the bias correction algorithm has been
implemented in a new ad hoc class.

Quantile mapping has been widely used and is among the most important and popular bias correction
methods. It assumes that the cumulative distribution function (CDF) of a variable in the forecast and
observation time series does not change in the future period (Y. Tong et al., 2020). Given a variable x,
QM minimises the discrepancy between the CDF of the model data and that of the reference data,
over a certain calibration period. In practice, in a quantile mapping algorithm the model output x is
mapped to an observation output y by means of a transform function h, in such a way that their two
CDFs are equivalent (C. Piani et al., 2010):

y = h(x) - CDE, (y) = CDF; (x)
y = CDFE,™" (CDF, (x))

Where CDF? is the inverse function of the CDF. Generalised extreme value is a family of continuous
probability distributions often used for modelling extreme events. The GEV has three parameters:
location, u, scale, g, and one shape, § parameter. Depending on the value of the latter, the GEV
distribution is classified as Gumbel (shape parameter equal to 0), Fréchet (shape parameter greater
than 0), and Weibull (shape parameter lower than 0). The cumulative distribution function (CDF) of
the GEV distribution is the following:

CDF (x; u;0;§) = exp {_ [1 +< (x > “)]_1/5 }

o

In the case of total precipitation, the definition of extremes corresponds to the values above the 95"
percentile among the time series data. Considering temperature, also the lower extremes are taken
into account, i.e., the values below the 5% percentile. Hence, precipitation data is bias corrected using
the classic quantile mapping below the 95™ percentile, and the GEV fitting above that threshold.
Similarly, for temperature the quantile mapping is applied to the data between the 5" and 95
percentile, while GEV is fitted to the tails of the statistical distribution.

In Python, there are a few libraries for performing bias correction. For example, the bias_correction
module, released in August 2021 (https://pypi.org/project/bias-correction/), consists of functions to
remove biases across datasets. Implemented methods include quantile mapping, modified quantile
mapping and scaled distribution mapping (Gamma and Normal Corrections). This module takes as
input three datasets: an observation (reference) dataset, a dataset containing model simulations
during the same period as the observation data, and the model projection for a future period. The
bias_correction module gives as output the bias-corrected dataset for the future period. The downside
of this tool is that at every usage the reference dataset and the model simulations during the same
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period are required. In this way, the training phase has to be repeated every time, increasing the
computational resources required. For this reason, an ad hoc Python class has been created, which
separates the preparation of the bias correction model over a series of years (usually about 30) from
the operational use. The parameters of the bias correction models are saved and can be used in the
future applied to any period (without the need to recalculate them). The procedure consists of two
phases:

e Inthefirst phase, which can be called the 'training' phase, the parameters of the two statistical
distributions are computed (the one corresponding to be bias corrected, and the reference
one). In our case, the data to be corrected are the seasonal forecasts provided by ECMWF,
Météo-France and DWD, while as a reference, the ERAS reanalysis is used. Since the applied
method is different depending on whether the data is extreme or not, there will be two types
of parameters: for the central part of the distribution the parameters are the CDF values
corresponding to 20 quantiles (whose number can be changed by specifying it in the library).
Regarding the distribution tails, the parameters will be the 3 characteristics of the GEV:
location y, scale o, and shape ¢.

e Inthe second phase, namely the application of the bias correction technique, the parameters
obtained during the training phase are used to correct the seasonal forecast data by applying
the inverse function of the CDF.

2.2.2 Results

In this section, the raw predictions for three forecast centers (ECMWF, Météo-France and DWD) have
been evaluated and compared against the different bias-corrected predictions (simple QM and the
new method).

The procedure described in the previous section is applied for each month (e.g., for all Januaries from
1994 to 2020). Here, the months of January, February and March are shown as an example.
Furthermore, the results are different depending on the 'lead time'. Indeed, in seasonal forecasts,
predictions of the same month are provided at different starting months and these outputs are
identified by a different 'lead time'. For example, the forecast of January 2020 provided by the
seasonal forecast initialised in December 2019: in this case, the lead time would be 1. Instead, the
forecast of January 2020 initialised in July 2019 is identified by lead time 6. Since forecasts
corresponding to different lead times can have diverse performances in terms of accuracy, it has been
decided to consider them independently. Hence, for each month 6 results will be produced,
corresponding to the 6 lead times.

A first evaluation of the performance of the proposed bias correction method consists in comparing
the extremes of the seasonal forecast corresponding to two percentiles, 97" and 99%, with the
respective values of the reanalysis ERAS. For this purpose, the difference between the seasonal
forecast and the reference is shown in three situations: before applying the bias correction (i.e., using
raw data), after applying the classic quantile mapping approach, and after using the proposed method
(i.e., the combination of quantile mapping and GEV). To perform all these operations the reanalysis
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data had to be previously re-gridded onto the same coordinates of the seasonal forecast, which have
a resolution of 1°, using a nearest neighbors’ interpolation. The results obtained for 2-m temperature
with the three models (SEAS5, System 7 and GCFS2.1) for January and lead time 1 are shown in Figure
6,Figure 7 and Figure 8 as an example. In these figures, the left-hand side panel refers to the difference
calculated with the raw data, while the centre and right-hand side panels refer to data bias corrected
by quantile mapping and by our proposed method, respectively. For the sake of brevity, only the
results obtained on the 99" percentile will be shown hereafter.

As it can be seen from the left-hand side panels, raw seasonal forecasts underestimate the
temperature extremes corresponding to the 99" percentile in almost the entire study area. This
underestimation is more pronounced for SEAS5, while System 7 and GCFS2.1 behave differently in
some areas. The application of quantile mapping produces a clear decrease of the discrepancy, even
if a negative bias remains in the southwestern part of the African continent. The use of GEV fitting for
the tails produces a further improvement on the results, as it can be seen from the minor differences
between bias-corrected data and reanalysis. Similar outcomes are also found for the 97" percentile
and for the other months and lead times.
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Figure 6: Difference between the 2-m mean temperature 99t percentile value for seasonal forecast SEAS5
(ECMWEF) and ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel) and
corrected with the proposed bias correction method (right-hand side panel) seasonal forecast. Maps refer to
January and lead time 1.
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Figure 7: Difference between the 2-m mean temperature 99" percentile value for seasonal forecast System 7
(Météo-France) and ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel)
and corrected with the proposed bias correction method (right-hand side panel) seasonal forecast. Maps refer
to January and lead time 1.
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Figure 8: Difference between the 2-m mean temperature 99 percentile value for seasonal forecast GCFS2.1
(DWD) and ERAS5 reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel) and
corrected with the proposed bias correction method (right-hand side panel) seasonal forecast. Maps refer to
January and lead time 1.

A good indicator of a model's performance is the Root Mean Squared Error (RMSE), which measures
the deviation between predicted and reference data. For both variables, temperature and
precipitation, the RMSE between the extremes at the 99" and 97" percentile of the seasonal forecasts
and those of ERA5 has been computed. As it has been previously done, the calculation has been
performed both for raw and corrected data.

Concerning temperature, the values obtained are summarised in Figure 9Figure 10 and Figure 11,
which show the RMSE related to each month and lead time. Both types of bias correction improve the
performance of the predictions from the RMSE point of view, as it can be seen from the lowering of
this metric. Additionally, the proposed methodology further lowers the RMSE compared to quantile
mapping alone. Raw seasonal forecasts of 2-m temperature have a RMSE which in addition to being
larger, tends to vary with lead time. In some cases, like for SEAS5 and GCFS2.1, it decreases with
increasing lead time, contrary to what is expected. However, when bias-corrected, the RMSE becomes
much smaller and varies slightly, independently of lead time.
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Figure 9: RMSE of the 2-m mean temperature 99 percentile value for seasonal forecast SEAS5 (ECMWF)
compared to ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel) and

corrected with the proposed bias correction method (right-hand side panel) seasonal forecast.
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Figure 10: RMSE of the 2-m mean temperature 99 percentile value for seasonal forecast System 7 (Météo-
France) compared to ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre

panel) and corrected with the proposed bias correction method (right-hand side panel) seasonal forecast.
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Figure 11: RMSE (K) of the 2-m mean temperature 99 percentile value for seasonal forecast GCFS2.1 (DWD)
compared to ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel) and
corrected with the proposed bias correction method (right-hand side panel) seasonal forecast.

This behaviour is also observed in precipitation, where there is a consistent decrease of the RMSE with
lead time (Figure 13 and Figure 14). The application of bias correction produces a decrease in RMSE of
one order of magnitude and, sometimes, for System 7, Météo-France (Figure 8) and GCFS2.1, DWD
(Figure 14), the decrease is of two orders of magnitude.

FOCUS-Africa Project — Full-value chain Optimised Climate User-centric Services for Southern Africa. 31



RAW forecast

January February March
|

o 0.013 0.012 0.012
- 0.012
o 0.012
@
E
g [} 0.012
©
tar
~ 0.012
0 0.012
© 0.012

Leadtime

Quantile Mapping

January February March
1 1 1

o- 00027 0.004 0.0047
~- 0.0027  0.004  0.0047
o - 0.0027 0.0042 0.0048
o - 0.0026 0.0043 0.0047
< - 0.0027 0.0044 0.0049
w - 0.0027 0.0045 0.0048
©- 0.0027 0.0043 0.0049

Leadtime

Proposed method

January February March
1 1 I

o- 0.003 0.0036 0.0031
~ - 0.0031 0.004  0.0031
o - 0.0031 0.0037 0.0033
«w- 0003 00039 0.0031
< - 0.0031 0.0037 0.0031
w- 0.0031 0.0036 0.0032
©- 0.003 0.0034 0.003

Figure 12: RMSE (m) of the total precipitation 99" percentile value for seasonal forecast SEAS5 (ECMWF)
compared to ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel) and
corrected with the proposed bias correction method (right-hand side panel) seasonal forecast.
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Figure 13: RMSE (m) of the total precipitation 99" percentile value for seasonal forecast System 7 (Météo-
France) compared to ERA5 reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre

panel) and corrected with the proposed bias-correction method (right-hand side panel) seasonal forecast.
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Figure 14: RMSE (m) of the total precipitation 99t percentile value for seasonal forecast GCFS2.1 (DWD)
compared to ERAS reanalysis. Raw (left-hand side panel), corrected with quantile mapping (centre panel) and
corrected with the proposed bias correction method (right-hand side panel) seasonal forecast.

Itis also interesting to see how the percentage of ensemble members which identify extremes varies,
before and after applying bias correction. Indeed, seasonal forecasts consist of a certain number of
ensemble members, i.e., independent realizations of the forecast. In the case of SEASS5, there are 25
members for hindcasts (period from 1993 to 2016) and 51 for real-time forecasts (since 2017). System
7 also has 25 members, while GCFS2.1 has 30. Each member is an independent forecast with different
initial conditions and the spread of the ensemble members provides information on the confidence of
the prediction.

First, the extreme events have been identified according to the ERAS reanalysis. This analysis has been
performed for every grid point, considering 'extreme' any value above the threshold (97" or 99t
percentile). Then, for each model ensemble, the number of ensemble members overcoming the
threshold at least once in a time-window centered on the date of the event under analysis has been
computed. As these are long-term forecasts, it makes no sense to look at the exact date on which the
extreme event occurred, because the seasonal forecast is unlikely to identify the phenomenon on that
specific day. For this reason, a 14-day window centered on each date of the seasonal forecast dataset
has been considered (the previous and the following weeks). In this time window, the maximum value
of the variable has been identified and compared with the threshold value. If the maximum value is
higher than the quantile, the threshold is exceeded at least once, and, according to the proposed
definition, that ensemble member identifies an extreme event.

Then, for each cell and timestep, the number of ensemble members for which the threshold was
exceeded has been counted. Afterwards this, the sum is divided by the total number of ensemble

members, obtaining, for each event, the percentage of members that have correctly detected the
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extremes. Finally, for each cell the average percentage has been computed. This calculation has been
done for every month and lead time. In Figure 15Figure 16Figure 17, the maps containing the
percentage for each cell, referred to January, February and March predicted with lead time 1 are
shown as an example. Only raw data and data corrected with the method proposed are shown
(quantile mapping alone has produced very similar results to the proposed method). In general, the
proposed bias correction improves the ability of ensemble members to predict extreme events.
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Figure 15: Spatial representation of the ensemble members percentage correctly predicting 2-m mean
temperature over the 99" percentile value for raw (first row) and bias-corrected (second row) seasonal forecast
SEASS (ECMWEF). Results are shown for the three months (row-wise) and lead time 1.
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Figure 16: Spatial representation of the ensemble members percentage correctly predicting 2-m mean
temperature over the 99t percentile value for raw (first row) and bias-corrected (second row) seasonal forecast
System 7 (Météo-France). Results are shown for the three months (row-wise) and lead time 1.
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Figure 17: Spatial representation of the ensemble members percentage correctly predicting 2-m mean
temperature over the 99" percentile value for raw (first row) and bias-corrected (second row) seasonal forecast
GCFS2.1 (DWD). Results are shown for the three months (row-wise) and lead time 1.

The percentages for each month and lead time, averaged over the entire domain, are summarized in

the tables corresponding to Figure 18, Figure 19 and Figure 20. As it can be seen from these tables, the

proposed bias correction method produces a net increase in the percentage of members able to

correctly predict temperature extremes. The improvement is particularly drastic for SEAS5, whose raw

data presents a very low percentage, under 1%. Thanks to the correction, the percentage range

increases from 16 to 23% depending on month and lead time. In general, performance is better in

March and tends to decrease as lead time increases.

Leadtime
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1

0.47

0.55

0.55

0.52

0.48

0.48

RAW forecast

February
I

0.52

0.33

0.40
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0.71

0.42

March
|

0.41

0.57

0.48

0.52

0.55

0.46
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January
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17.37:

17.09
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16.68

16.02

15.47
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February
|

16.10
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18.40

Figure 18: Mean percentage of ensemble members correctly predicting 2-m mean temperature over the 99t
percentile value for seasonal forecast SEAS5 (ECMWF). Raw (left-hand side panel), and corrected with the
proposed bias correction method (right-hand side panel) seasonal forecast.
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Figure 19: Mean percentage of ensemble members correctly predicting 2-m mean temperature over the 99t
percentile value for seasonal forecast System 7 (Météo-France). Raw (left-hand side panel), corrected with
quantile mapping (centre panel) and corrected with the proposed bias correction method (right-hand side panel)

seasonal forecast.

January
1
~-- 829
o - 8.14
g :
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February
1

8.52
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1

6.16
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8.99

9.22

5.64

Leadtime
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w - 5.80 7.71 8.22

Figure 20: Mean percentage of ensemble members correctly predicting 2-m mean temperature over the 99t
percentile value for seasonal forecast GCFS2.1 (DWD). Raw (left-hand side panel), corrected with quantile
mapping (centre panel) and corrected with the proposed bias correction method (right-hand side panel)

seasonal forecast.

The situation is different for precipitation, in which the correction produces a lowering of the
percentages. The result shown in Figure 21 refers to SEAS5, as System 7 and GCFS2.1 have similar
behaviours. After the correction there is a drop in the percentage of ensemble members in accordance
with the extreme events detected by ERA5. However, it is interesting to note that the percentage of
the bias-corrected data does not appear to depend on month or lead time.
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Figure 21: Mean percentage of ensemble members correctly predicting total precipitation over the 99
percentile value for seasonal forecast SEAS5 (ECMWF). Raw (left-hand side panel), and corrected with the
proposed bias correction method (right-hand side panel) seasonal forecast.

2.3 Skill of seasonal forecasts for hydrological applications

The objective of this section is to provide an evaluation of the skill of seasonal forecasts over SADC
and the Malawi Shire’s basin, with a focus on hydrological analyses (and, by implication, water and
energy resources). This objective has been translated into the following analysis framework:

e Evaluation is done for hydrological basins (Figure 22) rather than for climate model grid
(although there are still some analyses conducted at grid level).

e The primary focus is on forecasting rainfall over the main part of the rainy season, which in
the vast majority of SADC region is the DJF season, with the forecast issued at a range of lead
times. This focus reflects the primary concern of water resource managers, i.e. the state of
water resources at the end of the rainy season (although the last month of DJF, i.e. Feb is
technically not the end of that season).

e Evaluation is done for individual models from the Copernicus Climate Change Service (C3S)
obtained through the Copernicus Climate Data Store (cds.climate.copernicus.eu). The main
goal of this approach is to enable the selection of skillful models/forecasts for the subsequent
hydrological simulations (or to build a multi-model ensemble for these simulations).

e |n addition to the Copernicus systems, the skill of the Southern African Regional Climate
Outlook Forum (SARCOF) forecast has also been evaluated. The SARCOF forecast is based on
the so-called consensus approach, whereby different information sources are interpreted by
experts towards derivation of a tercile forecast for seasons at a range of lead times. As such,
SARCOF forecast cannot be directly linked to hydrological or water resource models, as it does
not contain any information other than probabilities of tercile categories for the target
season. However,
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O SARCOF is an established process, well embedded in institutional and decision-making
landscape of the SADC region, and as such it is a 'reference’ for any other seasonal
forecasting activity.

O SARCOF forecast is issued for lead times that exceed those of the dynamical forecasts
from Copernicus and, as such, it may be a source of 'soft' information contributing to
decisions related to operations of water resources/energy systems in addition to
'hard' information emerging from the numerical forecasting systems.

e The focus is on the standard probabilistic tercile forecast, i.e. forecast of probabilities of
normal, below normal, above normal categories, with the two latter effectively translating
into a one-in-three-year drought and one-in-three-year wet conditions.
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Figure 22: 63 main hydrological basins in the SADC region (left) and mair river basins (right).

2.3.1 Data and methods

2.3.1.1 Dynamical models from the Copernicus Climate Data Store

Currently (September 2022), that resource provides access to forecasts from nine forecasting systems.
However, in this subsection only eight have been analysed, due to the complexity of compiling
appropriate hindcast data for the GloSea6 system which generates hindcasts on-the-fly. Descriptions
of the forecasting systems used are available at the following link, while the summary of available data
can be found at this other link. The main characteristics of the data streams for the Copernicus

forecasts are as follows:

® Forecasts are issued around the 15th of every month.

e The initialization time of the forecasts varies between systems. Some are initialized on the
first day of the month (all members are initialized on the same day/time), others are intialized
several times in a month (all member of the ensemble are intialized several times in a month)
whereas some have a staggered initialization (each member is initialized on a different
day/time). In this regard, CDS consolidates data from all the systems into a uniform
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framework, namely - all members for each system are presented as starting on the first day
of the forecast month.

® Forecast time series spans 6 months including the month on which the forecast is issued
Individual models provide between 10 and 51 ensemble members
Data are available on daily time step with spatial resolution varying between systems and
falling between 0.4-2.8 deg (approx. 40-280km)
Rainfall is one of many available variables.

e Hindcast (or retrospective forecast) data are available for different periods depending on the
model, but in principle, all models have hindcasts between 1993 and 2016.

2.3.1.2 SARCOF forecast

The SARCOF forecast is based on the so-called consensus approach, whereby different data sources
are interpreted by experts towards derivation of a tercile forecast for seasons at a range of lead times.
SARCOF forecast is issued twice a year - in August and in December or January (the so-called SARCOF
update). In August, the forecast is generated for the following seasons: OND, NDJ, DJF, JFM. On the
other hand, in December/January, forecasts are generated for FMA and MAM. In this work only August
forecasts are analysed as they are more relevant from the perspective of this activity. Moreover, data
from SARCOF updated forecasts are only available for several years, which is not enough for
appropriate skill evaluation. SARCOF forecasts after 2011 are analysed (Figure 23), as only these were
'recovered' from available archived materials.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

ol | [ TR [ | “
5 21 221 2| 22 2 2
SN2 22 L2k 2 22

Figure 23: SARCOF forecast in the period 2013-2022. Colours denote forecast categories used in the SARCOF
process and these are described in detail in this section (2.3.1.2).

SARCOF forecast remains the same since its inception in 1995, although adoption of particular tools
and software 'enshrines' certain modalities of that methodology. The most recent development was
the introduction in 2019 of a custom-made Climate Forecasting Tool (CFT) that replaced a series of
operations with STATISTICA, MS Excel, QGIS/ArcGIS with a single software framework. The generation
of a SARCOF forecast follows these steps:

1. Astatistical model (CFT offers a choice of a multiple linear regression and a machine-learning
model - multi-layer perceptron regression) is developed for individual stations that captures
the relationship between predictands - SST or geopotential height anomalies in the month
preceding the forecast, i.e. in July for the August event, and predictor - historical rainfall at
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target station over the target season. That relationship is developed for a calibration or
reference period, which typically is 1970-2000 (but might be 1981-2000, depending on the
availability of data), for each target season (separately). To derive predictors, Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSST.v5) data are used, and a procedure
is implemented whereby SST regions with maximum and statistically significant correlation
with station rainfall are identified prior to development of the regression model.

2. That model is used to predict tercile categories for years in the validation period (i.e. the
remainder of the available station observations that are not included in the model calibration).
This is done separately for each target season.

3. The tercile forecast for the target season is formulated based on probabilities derived from a
contingency table summarising performance of the statistical model over the validation
period. The forecast tercile category is the tercile of the climatological rainfall distribution into
which the line of best fit of the regression model falls into.

4. Afour-category forecast for homogeneous climate zones is derived by weighted averaging of
forecast categories for individual stations that fall within a zone. Four categories in the station
forecast are obtained by splitting the normal category of the standard tercile forecast into two
categories - below normal to normal spanning 33rd-50th percentile, and normal to above
normal, spanning 50th-66th percentile. Weights reflect the level of skill that a forecast for an
individual station exhibits over the validation period. Skill is measured using a hit rate (a.k.a.
Probability of detection) for a dichotomous forecast. Homogeneous climate zones are defined
a-prior at the level of individual countries based on similarity of interannual variability of
rainfall, individually for each target season.

5. Forecast for individual stations is also derived using the IRI Climate Predictability Tool (CPT).
In that MOS approach of principal component regression (PCR) is used with station rainfall as
predictand and PC-transformed geopotential height of a selected dynamical forecast model
as predictor.

6. The zonal forecast from CFT and station forecast from CPT, together with the evaluation of
the status of modes such as ENSO and I0D (or their 'flavours') that are known to influence
rainfall over analysed zones, are then synthesised to derive final zonal forecast for each of the
countries. That said, there are no prescribed rules on how these various sources of
information are to be combined.

7. Inadiscussion session with representatives of all countries, individual countries present their
forecasts, and a consensus forecast is derived for regional zones, based on a relatively
subjective process of amalgamation and adjusting individual country forecasts. The regional
zones do not necessarily align with the country zones.

In the end, SARCOF forecast is presented as a map visualising the spatial distribution of the four
forecast categories: below normal (BN), below normal to normal (BN-N), normal to above normal (N-
AN) and above normal (AN). These categories have associated probabilities of the standard terciles,
namely below normal (B), normal (N) and above normal (A), with boundaries between them at 33 and
66 percentile of climatological distribution of rainfall. The probabilities are fixed, i.e. they do not
change from year to year irrespective of the outcome of the forecast. i.e. the BN category will always
have 40/35/25 tercile (B/N/A) probabilities (Figure 24 and Figure 25). What changes between the
years is only the category that is forecasted.
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final forecast categories
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Figure 24: SARCOF forecast categories. Values in brackets represent probabilities of standard terciles. Rainfall
values in the figure are for a particular location as an illustration of the principle.
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Figure 25: Fixed tercile probabilities of four SARCOF forecast categories.

2.3.1.3 Overall framework of skill analyses

As outlined in the introduction of this section, the overall framework of this activity focuses on
forecasting DJF season with various lead times, considering systems from Copernicus as well as the
SARCOF forecast. The skill comparison of these two systems cannot be done in an identical manner.
This is because the dynamical forecasts are bound by a 6-month lead time, i.e. the earliest forecast
that allows evaluation of DJF is in September. In turn, SARCOF forecast is issued only once a year in
August, and has a lead time between 3 and 8 months, i.e. it covers forecasts for OND, NDJ, DJF and
JFM. It is therefore impossible to compare DJF forecasts directly. Instead, the skill of the two forecast
approaches is compared targeting SON and OND seasons. The skill of SARCOF forecast for DJF in
absolute and not relative terms is also evaluated, i.e. without comparing it to the skill of dynamical
forecasts.

In addition, because of the nature of the SARCOF forecast, whereby it is given for broad regional
homogeneous climate zones (intersecting many of the considered river basins) the evaluation of
SARCOF skill is presented at the grid level rather than at the basin level. The adopted grid is that of
observational data used, i.e. 0.25deg grid of CHIRPS rainfall dataset.
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2.3.1.4 Measures of forecast skill

WMO (Mason, 2018) recommends a range of skill measures to be used in forecast verification.
Actually, an accurate probability forecast should be characterized by:

e Reliability: the agreement between forecast probability and mean observed frequency.

e Sharpness: the tendency to forecast probabilities near 0 or 1, as opposed to values near
climatological occurrence probability.

e Resolution: the ability of the forecast to resolve the set of sample events into subsets with
different outcomes.

However, for the purpose of the following analyses, only three verification metrics have been adopted
(this is motivated by the need to optimize the amount of information presented in this report). These
metrics are:

1. ROC score (ROC area under the curve): it measures the ability of the forecast to discriminate
between two alternative outcomes, thus measuring resolution. It is frequently used to present
the skill of categorical probabilistic forecasts, and although complex and not easy to
understand, it remains one of the most comprehensive skill measures.

2. Heidke skill score: this score, similarly to the ROC score, reflects forecast resolution, but has
the advantage of being more directly interpretable, particularly when one considers that
probabilistic forecasts are often interpreted as 'deterministic' ones forecasting the most
probable category. Heidke hit score measures how often did the category with the highest
probability occur. Heidke skill score is a transformation of the Heidke hit score that measures
the fraction of correct forecasts after eliminating those forecasts which would be correct due
purely to random chance, and as such indicates an intuitive measure of forecast being better
(or worse) than a random guess.

3. Effective interest rate. This score is one of scores that measure all or most of the important
attributes of good probabilistic forecasts, rather than focusing on individual ones. WMO
recommends ignorance rate over the often used RPSS, and suggests that for presentation it is
transformed into effective interest rate. The effective interest rate has the advantage of being
relatively intuitive and interpretable by a non-technical audience - as it provides an indication
of the average returns an investor would make if they invested on the forecasts and were paid
out against odds based on the climatological probabilities. This creates an intuitive measure
of forecast being better (or worse) than an expectation of climatological probabilities of
events.

2.3.1.5 Calibration of dynamical forecasts

For the analyses presented in this report, dynamical forecasts have been calibrated using Inflation of
Variance (loV) approach described by Johnson and Bowler (2009). This approach is akin to bias
correction, and it adjusts values of individual ensemble members so that they are statistically identical
to observations, where ‘statistically identical’ means that the ensemble members and the
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observations have the same climatological variance and the same correlation with the ensemble
mean. The approach ensures reliability of the forecast, i.e. that the spread of observations is
adequately ‘sampled’ by the forecast (under the assumption that the spread of observations can be
described by normal distribution, which is fulfilled at seasonal time scale). The method is frequently
used to calibrate operational seasonal climate forecasts (e.g. Cottrill et al. 2013) and hydrological
forecasts (Roulin E., & Vannitsem S, 2015), and relatively simple to implement.

More specifically, the calibration of the forecast has been done with respect to CHIRPS blended
observations-satellite rainfall data product (Funk et al. 2015). That dataset is frequently used in a range
of applications over southern Africa. This method has been implemented on a monthly basis using a
leave-one-out approach, i.e. data for each month/lead time and each year are calibrated
independently using parameters derived from all data for that given month/lead time with that year
excluded. This approach effectively ensures that when the calibrated data are used in the process of
model verification to calculate forecast skill, the outcome is a cross-validated skill measure.

2.3.2 Results

2.3.2.1 Skill of SARCOF forecasts

SARCOF forecast shows a relatively high skill measured by ROC score for below normal and above
normal terciles (reaching values of 0.85-0.9), but low skill for the normal tercile (Figure 26). The high
skill for the two ‘non-normal’ terciles is not accompanied by high skill in the other skill measures, i.e.
in the effective interest rate (EIR) and Heidke skill score (HSS). These two skill measures display
relatively low levels of skill, scattered in spatial ‘pockets’. There appears to be some (although
relatively weak) reduction of skill with lead time in ROC for ‘non-normal’ terciles, but an increase in
skill with lead time for the normal tercile. EIR and HSS seem not to show any change in skill with lead
time.

While the overall impression on skill of SARCOF forecast is optimistic, Figure 26 indicates that the
forecast has a very poor reliability and, in particular, the below normal tercile has never been
forecasted as a tercile with the highest probability. The explanation of the apparent contradiction
between that lack of forecast of the below normal tercile (Figure 26) and the obviously high ROC skill
for that tercile (Figure 26). lies in the fact that the forecast of the SARCOF 'N-AN' category gives a
probability of below normal tercile at 35%, which is higher than the climatological probability and,
hence, that category is forecasted approximately 50% of the time. The same applies to the above
normal tercile. By extension, the lack of skill in the normal tercile results from the fact that this tercile
has always a probability that is higher than climatology, independent of which SARCOF category is
forecasted. As a result, the forecast of the normal tercile is bound to fail two out of three times (as
the normal tercile occurs only once in three years on average, resulting in no skill of such forecast.

The two remaining measures of skill, i.e. EIR and HSS are free of the artificial inflation of skill resulting
from the overlay of tercile probabilities and the SARCOF category forecast frequency. As mentioned
earlier, these measures express low levels of skill, with little spatial coherence. The spatial structure
of these two skill measures does not seem to correspond to known spatial patterns of influence of
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global modes of climate variability, two of which are illustrated in Figure 28, and neither does it bear
any resemblance to the distribution of homogeneous climate zones used to present SARCOF forecast.
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Figure 26: Skill of SARCOF forecasts.
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Figure 27: Frequency of the four SARCOF forecast categories in SARCOF forecast and observations over
overlapping periods over all locations in the SADC region. Note that frequencies of the two-central categories in
observations are lower than those of the outer categories because the latter are terciles, while the former split

the central tercile. A reliable forecast would have frequencies of forecast categories corresponding to
frequencies of observations.
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Figure 28: Patterns of rainfall anomalies (ERA5 rainfall) associated with anomalies in ENSO and IOD - the two
main modes of climate variability known to influence southern African rainfall and potential sources of seasonal

predictability.

2.3.2.2 Skill comparison of SARCOF and dynamical forecasts

As outlined earlier, SARCOF and dynamical forecasts skill can be compared only for forecasts issued in
August for OND and NDJ seasons. Relative frequency - a measure of the forecast reliability (i.e. ability

to forecast events with observed frequency) indicates that while SARCOF forecast is clearly biased

towards the normal category, the dynamical systems generate forecasts that are relatively uniformly
distributed across all three terciles for both OND and NDJ forecasts (Figure 29).
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Figure 29: Relative frequency of forecasted tercile (tercile with maximum probability) in SARCOF and dynamical
forecasts. Frequency represents all grid points in the domain overall years for which the forecast is available.
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In terms of forecast skill, SARCOF forecast shows relatively high ROC score for below normal and above
normal terciles over Tanzania and summer rainfall region of South Africa in OND, and South Africa,
Botswana, Zimbabwe and Angola in NDJ. However, as argued above, this skill seems to be a spurious
byproduct of the combination of tercile probabilities used by SARCOF forecasts and bias of the forecast
towards the normal tercile and does not reflect a real skill.

The dynamical forecasts show considerably lower levels of skill, with only SEAS5 and GEM5-NEMO
systems depicting higher values over Tanzania in OND (that manifests in each of the skill measures
used here, apart from ROC score for normal tercile as seen in Figure 30). CFSv2 and CPS3 systems
show a similar pattern of skill to the former, but with lower values. The remaining models show weak
skill with scattered spatial patterns.

On the other hand, forecasts for the NDJ season have substantially higher levels of skill than forecasts
for OND (Figure 31). The four systems mentioned above show skill over Tanzania, and three of those
(SEASS5, CFSv2 and CPS3) show high skill over southern Africa south of -15 deg latitude. Skill in that
part of southern Africa is also displayed by SPS3.5 and GCFSv2.1. Those skill patterns are consistent
across the various skill measures apart from the ROC score for normal tercile. Similarly to OND
forecast, this skill metric shows lower values and scattered spatial patterns.
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forecast issued in Aug for OND
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Figure 30: Skill of SARCOF and dynamical model forecasts of OND rainfall issued in August.
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forecast issued in Aug for NDJ
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Figure 31: Skill of SARCOF and dynamical model forecasts of NDJ rainfall issued in August.
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2.3.2.3 Skill of dynamical models in forecasting DJF rainfall in the hydrological basins

The skill of the DJF rainfall forecast for river basins issued in Sep-Dec is visualized in the maps of Figure
32,Figure 33Figure 34Figure 35 and bar charts for the below normal tercile ROC score (Figure 36, Figure
37, Figure 38 and Figure 39). In bar charts, the individual basins are clustered within the 15 main river
basins of the region illustrated in Figure 22. These figure show that there is only limited skill
consistency across basins, forecasting systems and lead times, and while the figures provide means
for selecting skillful forecasting systems for individual basins (save the consideration of skill arising by
chance) it is difficult to derive broad generalizations from them. However, some key features can be
highlighted:

® In general, main river basins for which forecasts are relatively skillful across lead times and
forecasting systems include: Tanzanian East Coast, Limpopo, Okavango, parts of Orange and
parts of Zambezi.

e There is in general low skill and low consistency in basins in coastal Angola, Congo,
Madagascar, and south-east coast of South Africa.

e Considering context provided by the Malawi case studies, DJF rainfall forecast for Shire shows
skill only for forecasts issued in Dec.
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forecast issued in Sep for DJF
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Figure 32: Skill of forecast of DJF rainfall in river basins issued in September.
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Figure 33: Skill of forecast of DJF rainfall in river basins issued in October.
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Figure 34: Skill of forecast of DJF rainfall in river basins issued in November.
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Figure 35: Skill of forecast of DJF rainfall in river basins issued in December.
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2.4 Review of seasonal forecasting approaches at SARCOF and SWIOCOF

The review of the climate outlook forums (SARCOF and SWIOCOF) has been conducted in parallel to
the characterization of climate services’ gaps in WP7. The process has followed a competency-based
analysis considering five competencies: i) create and manage climate data sets; ii) derive products
from climate data sets; iii) create and interpret climate forecasts and models; iv) ensure quality of
climate forecasts; and v) communicate information to users (as described in the WMO Guide to
Competency (WMO, 2018).

All SADC National Meteorological and Hydrologic Services (NMHSs) participate in the SARCOF process
and communicate the seasonal forecast during their National Climate Outlook Forum (NCOF). The IRI
Data Library, Climate Prediction Center (CPC), National Oceanic and Atmospheric Administration
(NOAA), and United Kingdom Meteorological Office (MO), are the principal climate predictor's
datasets used by these services. They are provided at monthly time scales and in Network Common
Data Form (NetCDF) format.

During previous SARCOFs, SYSTAT7 was used for statistical forecasting, but the method was improved
with the development of the Climate Forecasting Tool (CFT) by SADC-CSC during the Satellite and
Weather Information for Disaster Resilience in Africa (SAWIDRA) project. This tool was released during
SARCOF 23 in August 2019. Initially, it used Linear Regression (LR), but subsequently in the following
SARCOF 24 it was updated with Artificial Neural Networks (ANN), which uses Multilayer Perceptron
(MLP) regression.

During previous SARCOFs, only the SST predictor was used together with related climate drivers for
that year, however, for the past two years more variables like MSLP, temperature at 2m, wind speed
and direction at different levels, among others, were introduced and are currently being used during
SARCOF and NCOF's. In SWIOCOF, the seasonal forecast uses the number of cyclones, precipitation,
the accumulated cyclone energy and number of cyclone days during the season as predictands.
Dynamical approach is also considered based on global operational forecasts products available at
ACMAD and Regional Specialized Meteorological Centre (RSMC) La Reunion. The SWIOCOF put
emphasis on statistical-dynamical approach because of its improved forecasting skills. The second tool
used at SARCOF is the CPT, which has been in use since the beginning of the SARCOF process. During
SARCOF 24, more training was done on the tool, focusing on enabling experts to conduct station
forecasts, and use more predictors from the CPC data set. Seasonal North American Multimodel
Ensemble (NMME) hindcast and forecast were also introduced and used for the first time.

Regarding verification, SADC-CSC trained a few experts on the use of a verification template, which
includes probability of detection, bias skill scores, hits and false alarms. The methodology uses
observed data, which is transformed in the tercile scale, using the long term mean and the standard
deviation based on the long-term average. There was also an evaluation of the SARCOF rainfall
outlooks from 2001 to 2012 done by FEWSNET (Magadzire, 2012) to determine the performance of
the forecast with the observations. The evaluation showed that the SARCOF forecasts over those
twelve years on average performed very well. SADC-CSC had an improved version of the verification
of the SARCOF 22 rainfall outlook, which used Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) version 2 and included the half hit and half miss approach. During SARCOF 24,
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in August 2020, ACMAD introduced and trained SADC-CSC officers on the ranked probability skill score
(RPSS) method, but the knowledge was not cascaded down to the NMHS climate experts in the region.
At that same SARCOF, SADC-CSC used an improved method of verification, whereby the climate
drivers were considered. From the information gathered it can be concluded that there is limited
exposure of the experts to verification methods and tools. The methodology for intercomparison and
comparison of operational global or regional forecasts with observations and the user-relevant
verification schemes are hereby identified as regional capacity gaps to be addressed using WMO
guidelines and manuals for available best practices.

In these SARCOF processes, before the seasonal forecast is released, there is a presentation on the
'Current Status of the Global Climate System' which is usually presented by a climate expert seconded
to SADC-CSC. Mostly the key drivers examined are the current SST’s, the current and forecasted El
Nino Southern Oscillation (ENSO) conditions, the Indian Ocean Dipole (I0OD), the Southern Indian
Ocean Dipole (SIOD), and conditions over the South-West Indian Ocean (SWIO). These are then
combined with the global model rainfall outlooks from sources such as IRI, National Centers for
Environmental Prediction (NCEP) and the South African Weather Service (SAWS). Professionals from
other partners like the Famine Early warning Systems Network (FEWSNET) and from different climate
sensitive sectors also make presentations from research that they have done, or on the impacts of the
previous rainfall season. Usually after SARCOF, experts present their results to their relevant NMHS,
including the skills of the different models and predictors used.

In fact, in the SADC region, monthly agro-meteorological and drought monitoring bulletins are
produced by NMHSs, but they do not reach all relevant users. SADC-CSC provides information on the
institutional website, while some SADC countries also have their own websites. However, most of the
SADC NMHSs are still in the process of developing an effective and user-friendly online platform.
Seasonal Outlook Statements are communicated using emails, webpages, and various media
platforms (radio, newspaper, TV, social media etc.). SADC-CSC also prepares an early warning bulletin
for climate sensitive sectors, which is loaded on the SADC-CSC website, an example of which can be
seen for the 2018/19 rainfall season.

Apart from the sector breakout groups during the SARCOF and the production of the Early Warning
Advisory Bulletin, little is done in relation to tailoring climate information to specific user needs by co-
designing and co-developing products with users. From the survey component on climate services
communication, most SADC members (more than 50%) are lagging in terms of GFCS full
implementation. However, the main gap identified under seasonal forecasting is the limited use of
GCM data sources in the region. There is not good knowledge on how to retrieve data from the
different data sources and there is little training done on applications like CPT, and on the
documentation, communication, and interpretation of the skills of the model outputs. Intra seasonal
drivers of seasonal climate (e.g. tropical/equatorial waves) are not considered in the seasonal
forecasting approach in SARCOF/SWIOCOF resulting in poor forecast in years when intra seasonal
drivers dominate the seasonal climate variability. Besides, the evaluation of seasonal forecast quality
through the forecast quality assessment should also be considered. This involves setting up a quality
assessment framework to provide end-users with the tools to understand which approaches could
better fit their interests. Showing the skill score of a forecast to the user increases the reliability and
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usefulness of the forecast. Such skill scores will vary depending on the season, the variable being
evaluated, the region as well as the lead time.

2.5 Review of seasonal forecasting approaches for the rainfall season in Tanzania

In Tanzania one of the most important climatic features is the alternation of dry and wet seasons (due
to its impacts on food security and farming). The dry season comprises May to September months,
whereas the wet season has two presentations:

e Bimodal: in this mode there are two rainy seasons, March to May (Masika rains) and October
to December (Vulirains). This behaviour is found over the lake Victoria Basin, the northeastern
highlands and northern coasts of the country.

e Unimodal: in this mode there is only one rainy season, from November to April (Msimu rains).
This behaviour is found in southern, western and southwestern Tanzania.

In this framework, the National Weather and Hydrologic Service of Tanzania (Tanzania Meteorological
Agency, TMA), provides different types of forecast information related to rainfall in the country, both
for bimodal and unimodal areas. These predictions are issued considering the specific season of
interest for each region. For instance, the Oct-Dec forecast was issued in late August, while in
September, TMA issued the forecast for Nov-Apr season. Figure 43 Figure 49 review this information.

Firstly, the most recent predicted season is verified against observations, both regarding the
precipitation amount, (Figure 40) and the onset of the rainy season (Figure 41). Since the forecast is
issued in zones, the overall performance is averaged over the country. With regard to the term
accuracy used in the report (Figure 40), it is computed as a matching between forecasts and
observations (expressed in percentage). More specifically, TMA uses Probability of Detection (POD) or
Hit rates, which is the ratio of the number of correct forecasts to the total number of correct forecasts
and missing events (from a contingency table).
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MAM 2022 Seasonal Verification and Performance

FORECASTEDMAM 2022 RAINFALL OUTCOME

Figure 40: Comparison of the seasonal forecast for MAM 2022 and the observed outcome. In green,
performance comparison with the former MAM 2021 prediction. The grey colour corresponds to the unimodal
rainfall regime area, whereas the rest is for the bimodal regions.

MAM 2022 Onset

Tanzania Regions
Hover over a region

et to Start

The onset of rains is calculated as-t-he' first occasion during the MAM season on which more than 20 mm of rainfall is received in four
days, with at least two wet days. and no dry spell of 10 days or more within the following 30 days. A wet day is defined as a day that
=records 1 mm or more of rainfall. The onset is calculated from daily RFE data. The difference from average is calculated by subtracting
the onset for that season from the long term median onset
L v s

B
m Ministry of Works and Transport : IS0 9001:2015 Certified in Aviation Meteorological Services /mA

Figure 41: Verification of the onset of the rainy season for MAM 2022 in the bimodal areas. Each ‘dek’
corresponds to 10 days. ELVB is the acronym for East Lake Victoria Basin.

After this revision, the prospects for the next season are set by inspecting the status and prediction of
the El Nifio Southern Oscillation and the Indian Ocean Dipole. Figure 42 to Figure 45 show this
information for the OND 2022.
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Figure 42: State of the sea surface temperature (SST) Anomalies in the different relevant regions for the
Tanzanian climate. The left figure is for the last three months, whereas the right one corresponds to the
anomalies in the most recent week.

Multi-model ensemble SSTs forecast (K) for OND and skill
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SSTs over the West Indian Ocean (east African Coast) are expected to be cooler than average while over the
Eastern Indian Ocean is expected to be warmer than average., Moreover the Angola coast is expected to
have cool SSTs. Central equatorial Pacific Ocean (CEPO) is expected to have cooler SSTs. The forecast skill
is higher over the CEPO, moderate to high over the IO and low over the Angola coast.

The United Republic of Tanzania Tanzania Meteorological Authority

’
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Figure 43: Sea surface temperature seasonal forecast for the OND season (left), with the associated skill (right).
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Prediction of ENSO condition for OND 2022
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Figure 44: Prediction for OND 2022 ENSO conditions.
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Prediction of Indian Ocean dipole (IOD) for OND 2022
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Figure 45: Seasonal prediction of the Indian Ocean Dipole for the following months.

Finally, the seasonal rainfall outlook for the upcoming season is issued (amount and onset). An
example for OND 2022 is provided in Figure 46 Figure 49.
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October to December 2022 rainfall outlook
SARCOF
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Figure 46: October to December rainfall outlook from the GHACOF (left) and SARCOF (right).
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Figure 47: Seasonal forecast of the rainfall season onset (left), with the associated anomalies (centre) and
probability (right).
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Vuli Rains (OCTOBER - DECEMBER) 2022 RAINFALL
OUTLOOK
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Figure 48: Rainfall outlook for OND 2022. The grey colour corresponds to the unimodal rainfall area, whereas
the rest is for the bimodal regions.
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Figure 49: Rainfall outlook for OND 2022 rainy season with comments on the onset and cessation. The grey
colour corresponds to the unimodal rainfall area, whereas the rest is for the bimodal regions.
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3 Decadal prediction

Decadal climate predictions are a source of climate information for inter-annual to decadal time
scales, filling the gap between seasonal climate predictions and climate projections. There is an
increasing interest of users in having information on how the climate system will evolve during the
following years. Typically, forecast products are issued for annual, multi-annual, and multi-seasonal
averages, depending on specific user needs.

The predictability on these time scales is given by both the external forcings (both natural and
anthropogenic) and the internal climate variability (natural slow variations of the climate system,
Doblas-Reyes et al., 2013; Goddard et al., 2013; Smith et al., 2019). Decadal predictions are produced
with the same forecast systems as the climate projections. The only difference between them is that,
in addition to the information about external forcings (which is used to produce the climate
projections), the decadal predictions are run from a set of initial conditions created with the observed
climate state. With this procedure, known as model initialization, the decadal predictions aim at being
in the same phase as the actual climate variability (Hazeleger et al., 2013). After some forecast years,
the forecast systems lose the information about the initial conditions, and the evolution of the decadal
predictions converges to that of the climate projections.

3.1 Data and methods

The forecast quality assessment has been applied to spatial fields of near-surface air temperature, sea
level pressure and precipitation forecasts from all the available decadal predictions contributing to
the Decadal Climate Prediction Project (DCPP; Boer et al., 2016) of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016). Information on such decadal predictions and the
forecast system can be seen in
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Table 2.
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Table 2: Forecast systems contributing to the DCPP-A component of the CMIP6 and their specifications (available
simulations at the time of the study). The spatial resolution is shown for the atmospheric grid as 'nlon x nlat’,
where nlon corresponds to the number of longitudes and nlat to the number of latitudes of the respective global

grid.
. n2 of DCPP | n2 of HIST Spatial Month of
Forecast system Institution . o Reference
members members | resolution | initialization
Wu et al.
BCC-CSM2-MR BCC 8 3 320 x 160 January
(2019)
Swart et al.
CanESM5 CCCma 20 40 128 x 64 January
(2019)
CESM1-1-CAM5- Yeager et al.
NCAR 40 40 288 x 192 November
CMIP5 (2018)
Cherchi et al.
CMCC-CM2-SR5 cMcCC 10 1 288 x 192 November
(2018)
. Bilbao et al.
EC-Earth3-il BSC 10 10 512 x 256 November
(2021)
. Tian et al.
EC-Earth3-i2 SMHI/DMI 5 - 512 x 256 November
(2021)
HadGEM3-GC3.1- Sellar et al.
MOHC 10 4 432 x 324 November
MM (2020)
Boucher et al.
IPSL-CM6A-LR IPSL 10 32 144 x 143 January
(2020)
Tatebe et al.
MIROC6 MIROC 10 10 256 x 128 November
(2019)
Miiller et al.
MPI-ESM1.2-HR DWD 10 10 384 x 192 November
(2018)
Mauritsen et
MPI-ESM1.2-LR DWD 16 10 192 x 96 November
al. (2019)
Yukimoto et
MRI-ESM2-0 MRI 10 5 320 x 160 November
al. (2019)
Bethke et al.
NorCPM1 NCC 10 30 144 x 96 October
(2021)

The evaluation has been performed over the Southern African Development Community (SADC)
during the 1966-2014 period with the anomalies of the considered variables to remove the mean bias
of the predictions. The 1981-2010 period has been used to compute the climatology and thresholds
between the probabilistic categories. Each year, the predictions are run for the next ten years.
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Different forecast periods have been considered (forecast years 1, 1-5, 6-10 and 1-10). Different

reference datasets (gridded observations and reanalyses) have been used for each variable to account
for the observational uncertainty (Table 3).

Table 3: Reference datasets used for the forecast quality assessment and their specifications. The spatial
resolution is shown for the atmospheric grid as 'nlon x nlat', where nlon corresponds to the number of longitudes
and nlat to the number of latitudes of the respective global grid.

. Reference L. Spatial
Variable Institution Type . Reference
dataset resolution
. . Menne et al.
GHCNv4 NOAA Gridded observations 72 x36
(2018)
Near-surface air . Kobayashi et al.
JRA-55 IMA Reanalysis 288 x 145
temperature (2015)
. Hersbach et al.
ERAS ECMWF Reanalysis 1280 x 640
(2020)
. Kobayashi et al.
JRA-55 JIMA Reanalysis 288 x 145
(2015)
. . Allan and Ansell
Sea level pressure HadSLP2 MOHC Gridded observations 72 x37 (2006)
. Hersbach et al.
ERAS ECMWF Reanalysis 1280 x 640
(2020)
. . Schneider et al.
GPCC DWD Gridded observations 360 x 180
(2018)
o . Kobayashi et al.
Precipitation JRA-55 JIMA Reanalysis 288 x 145
(2015)
. Hersbach et al.
ERAS ECMWF Reanalysis 1280 x 640
(2020)

Verification is an essential step to estimate the quality and reliability of the forecasts. For it,
retrospective decadal predictions (known as decadal hindcasts) are created from 1960 to have a large
enough sample size to obtain robust quality estimates by comparing them against past observations.
The hindcasts are run with the same forecast systems as the actual forecasts and allow the detection
of systematic errors in the forecasts that can be partially corrected by applying post-processing
techniques such as bias-adjustment and calibration (Doblas-Reyes et al., 2005).

In this work five different calibration techniques have been applied with the aim of correcting the main
types of model's biases. Besides, the quality of the calibrated predictions has been compared to that
of the raw predictions to assess the impact of calibration. The five calibration methods are the
following: ‘bias’ (which corrects only the mean bias; Torralba et al., 2017), 'evmos' (which applies a
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variance inflation technique to ensure the correction of the mean bias and the correspondence of the
variance between the predictions and observations; Van Schaeybroeck and Vannitsem, 2011),
'mse_min' (which corrects the mean bias, the overall forecast variance and the ensemble spread by
minimising a constrained mean-squared error; Doblas-Reyes et al., 2005), 'crps_min' (which corrects
the mean bias, the overall forecast variance and the ensemble spread while minimising the continuous
ranked probability score; Van Schaeybroeck and Vannitsem, 2015) and 'rpc_based' (which adjusts the
forecast variance ensuring that the ratio of predictable components is equal to one; Eade et al. 2014).
All the calibration methods are implemented in the CSTools R-package (Pérez-Zandn et al., 2022) and
have the option to be applied in leave-one-out cross-validation mode (i.e., without using information
of the time step that is being calibrated, as it would be done in a real-time context).

Several metrics have been considered to assess different aspects of the quality of both deterministic
and probabilistic forecast products. Such evaluation has been systematically applied to all the forecast
systems, variables and forecast periods. The Anomaly Correlation Coefficient (ACC; Wilks, 2011) and
the Root Mean Squared Error Skill Score (RMSSS; Wilks, 2011) have been used for the deterministic
products. For the probabilistic products based on tercile and quintile equiprobable categories, the
Ranked Probability Skill Score (RPSS; Wilks, 2011), the FairRPSS (Ferro, 2014) and the Relative
Operating Characteristic Skill Score (ROCSS; Kharin and Zwiers, 2003) have been used. Those metrics
ending with the suffix 'Skill Score' allow comparing the performance of the predictions against other
reference forecasts (e.g., climatology, persistence, or other predictions previously used by users;
Jolliffe and Stephenson, 2012). In this work, the climatological forecast (defined as the equiprobable
forecast, i.e., probability of 33.33% for each tercile category) has been used as the reference forecast.
The skill scores range between minus infinite and 1. If a skill score is greater than 0, it indicates that
the forecast has higher skill than the reference forecast, while a negative value means that it has a
lower skill. Besides, the Spread-over-Error ratio (Fortin et al., 2014), Signal-to-Noise ratio (Scaife and
Smith, 2018), and Ratio of Predictable Components (RPC; Eade et al., 2014) have also been calculated.
A two-sided t-test has been applied to estimate the ACC significance at the 95% confidence level
accounting for the time series’ autocorrelation (Von Storch and Zwiers, 2001). The Random Walk test
(DelSole and Tippett, 2016) has been used to assess the significance of the skill scores at the 95%
confidence level.

Given the large number of results, only some have been shown here: the ones corresponding to the
forecast quality measured with the RMSSS and RPSS for tercile categories for near-surface air
temperature predictions for the forecast years 1-5 using the ERA5 reanalysis as the reference dataset.
The rest of the results can be accessed through a R Shiny App (https://earth.bsc.es/shiny/FOCUS-
Africa/) created to facilitate the accessibility and visualisation of the figures.

3.2 Results

The quality of the deterministic forecasts of near-surface air temperature measured with the RMSSS
shows a benefit of using the decadal predictions compared to the climatological forecast for most
regions considered (as indicated by positive values in Figure 50). Still, the regions where the RMSSS is
statistically significant vary across the forecast systems, finding most of them over Madagascar and
the central and western parts of the SADC. In contrast, there are regions where the climatological
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forecast shows a higher quality than the decadal predictions (e.g., over Botswana for some forecast
systems), although they are not statistically significant.

RMSSS - tas - Reference: ERAS - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
CanESM5

CESM1-1-CAM5-CMIP5 CMCC-CM2-5R5

EC-Earth3-il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 50: RMSSS of the CMIP6/DCPP forecast systems for the near-surface air temperature for the forecast
years 1-5 using climatology as the reference forecast. The predictions have been evaluated over the 1966-2014
period (start dates 1965-2009) for each grid point. The reference period to compute the anomalies is 1981-2010.
The reference dataset is the ERAS reanalysis. Crosses indicate that the values are statistically significant at the
95% confidence level based on a Random Walk test.

The systematic evaluation applied to all the forecast systems allows detecting windows of opportunity
(e.g., regions, forecast periods and variables) with enough skill to provide a climate service. For
instance, the RMSSS values can be useful for selecting the forecast system that provides the highest
forecast quality for each grid point. In that case, a different forecast system can be selected for each
region to ensure the highest possible quality and most reliable predictions for the forthcoming years.
Also, another advantage of such selection (in comparison to producing a forecast using only one
model) is that a particular forecast system might be skilful over a region, but it might not be over
others. Thus, the forecast system that provides the highest RMSSS for each grid point has been
selected and shown in Figure 51. Besides, the percentage of grid points where each system is the most
skilful is also shown. For this case (forecasts of near-surface air temperature for the forecast years 1-
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5), the IPSL-CMB6A-LR is the forecast system that provides the highest skill (measured with the RSMSS)
over more grid points of the SADC region (29.15% of the region).

Highest RMS5S among the forecast systems - tas - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
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Figure 51: Highest RMSSS of the CMIP6/DCPP forecast systems for the near-surface air temperature for the
forecast years 1-5 using climatology as the reference forecast (left) and Doughnut chart with the percentage of
grid points where each forecast system provides the highest RMSSS (right). The predictions have been evaluated
over the 1966-2014 period (start dates 1965-2009) for each grid point. The reference period to compute the
anomalies is 1981-2010. The reference dataset is the ERAS reanalysis.

Similar to the quality assessment of the deterministic products, the probabilistic forecasts have been
evaluated (Figure 52). The RPSS for tercile categories shows an added value of the decadal predictions
compared to the climatological forecast (defined as equal probabilities for all the tercile categories,
i.e., 33.33% of probability of occurrence for the three probabilistic categories). Besides, the RPSS
values are statistically significant for most regions and forecast systems. On the other hand, the
climatological forecast provides higher skill than the decadal predictions over some regions like
Botswana and its surroundings. However, these negative RPSS values are not statistically significant.
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RPSS (3 categories) - tas - Reference: ERA5S - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
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Figure 52: RPSS for tercile categories of the CMIP6/DCPP forecast systems for the near-surface air temperature
for the forecast years 1-5 using climatology as the reference forecast. The predictions have been evaluated over
the 1966-2014 period (start dates 1965-2009) for each grid point. The reference period to compute the tercile
categories is 1981-2010. The reference dataset is the ERA5 reanalysis. Crosses indicate that the values are
statistically significant at the 95% confidence level based on a Random Walk test.

In addition, there are other regions where some forecast systems do not provide better probabilistic
predictions than climatology, for example, over South Sudan and Uganda with the NorCPM1 system.
However, the possibility to select the best forecast system for each specific region could provide the
highest quality forecast for all the regions (Figure 53). For this specific probabilistic forecast evaluation,
three models stand out for showing the highest skill over a large percentage of the region. These are
the MRI-ESM2-0 (which is the best system over the 23.12% of the region), IPSL-CM6A-LR (20.6%) and
HadGEM3-GC3.1-MM (19.1%) forecast systems.
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Highest RPSS (3 categories) among the forecast systems - tas - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
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Figure 53: Highest RPSS for tercile categories of the CMIP6/DCPP forecast systems for the near-surface air
temperature for the forecast years 1-5 using climatology as the reference forecast (left) and Doughnut chart
with the percentage of grid points where each forecast system provides the highest RPSS (right). The predictions

have been evaluated over the 1966-2014 period (start dates 1965-2009) for each grid point. The reference
period to compute the tercile categories is 1981-2010. The reference dataset is the ERAS reanalysis.

As it has been introduced in section 3.1, five different calibration methods have been applied to the
raw decadal predictions to improve the forecast products' quality and reliability. For each forecast
system, the calibrated predictions have been evaluated and compared against the uncalibrated
predictions to estimate the impact of these calibration techniques. The calibration has been applied
in leave-one-out cross-validation mode, i.e., without using the information of the time step that is
being calibrated in order to not overestimate the impact of calibration.

For the deterministic temperature forecast for the forthcoming five years produced with the EC-
Earth3-il system, the RMSSS values obtained with the raw and calibrated decadal predictions show
an added value of using such predictions in comparison to the climatological forecast over the SADC
region (Figure 54). The raw forecasts show positive values over most parts of the region considered.
However, the RMSSS values are not statistically significant, except for some grid points in the eastern
sector. Instead, the calibrated forecasts show more regions with significantly positive RMSSS values,
indicating a benefit of applying calibration techniques, particularly over the central and northern parts
of the SADC region. Such benefit is also shown when comparing the calibrated and raw predictions, as
the RMSSS values are generally positive (and significant over several regions).
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RMSSS - tas - EC-Earth3-i1 vs ERAS5 - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
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Figure 54: RMSSS of the EC-Earth3-il forecast system for the near-surface air temperature for the forecast years
1-5 for the raw and calibrated predictions using climatology as the reference forecast (top row) and for the
calibrated predictions using the raw predictions as the reference forecast (bottom row). The predictions have
been evaluated over the 1966-2014 period (start dates 1965-2009) for each grid point. The reference period to
compute the anomalies is 1981-2010. The reference dataset is the ERAS5 reanalysis. Crosses indicate that the
values are statistically significant at the 95% confidence level based on a Random Walk test.

The predictions might have different bias types and magnitude over different locations. Thus, the
calibration method that most improves the forecast quality might differ across regions. Also, it should
be noted that each calibration approach aims at correcting only some of the model’s biases and, thus,
they can only improve specific aspects of the forecast quality as measured with each specific metric.
Therefore, the forecast quality might decrease if measured with another metric, and the calibration
method thus should be chosen accounting for the aspect of the quality that needs to be improved
(which strongly depends on the specific user’s needs). For the case of the RMSSS (Figure 55), the
calibration methods that show the highest benefit are the 'evmos' (which is the best one over 32.66%
of the region), 'mse_min' (25.13%), and 'bias' (18.59%) methods.
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Figure 55: Highest RMSSS of the raw and calibrated predictions for the near-surface air temperature for the
forecast years 1-5 using climatology as the reference forecast (left) and Doughnut chart with the percentage of
grid points where each calibration method provides the highest RMSSS (right). The predictions have been
evaluated over the 1966-2014 period (start dates 1965-2009) for each grid point. The reference period to
compute the anomalies is 1981-2010. The reference dataset is the ERA5 reanalysis.

The probabilistic raw and calibrated predictions have also been compared. When measured with the
RPSS, the calibrated predictions generally show little or no quality improvements with respect to the
raw predictions (Figure 56). The sector that shows the highest benefit from calibration is the Southern
part of the SADC region. However, it mostly coincides with the sector where neither the raw
predictions nor the calibrated ones show skill.

RPSS (3 categories) - tas - EC-Earth3-i1 vs ERAS - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
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Figure 56: RPSS for tercile categories of the EC-Earth3-i1 forecast system for the near-surface air temperature
for the forecast years 1-5 for the raw and calibrated predictions using climatology as the reference forecast (top
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row) and for the calibrated predictions using the raw predictions as the reference forecast (bottom row). The
predictions have been evaluated over the 1966-2014 period (start dates 1965-2009) for each grid point. The
reference period to compute the tercile categories is 1981-2010. The reference dataset is the ERAS reanalysis.
Crosses indicate that the values are statistically significant at the 95% confidence level based on a Random Walk
test.

The low improvement due to calibration found when using the RPSS might be a consequence of this
specific skill score not being sensitive to biases in the mean and variance (contrary to, for example,
the RMSSS). Then, although the mean and variance are adjusted (among other statistical properties),
the RPSS does not account for it. In this case, the calibrated forecast with the 'rpc-based' calibration
method is the one that shows the highest forecast quality over most points (34.17% of the considered
region; Figure 57).

Highest RPSS (3 categories) among the calibration methods - tas - Annual mean
Start dates: 1965-2009 - Forecast period: years 1-5 - Reference period: 1981-2010
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Figure 57: Highest RPSS for tercile categories of the raw and calibrated predictions for the near-surface air
temperature for the forecast years 1-5 using climatology as the reference forecast (left) and Doughnut chart
with the percentage of grid points where each calibration method provides the highest RPSS (right). The
predictions have been evaluated over the 1966-2014 period (start dates 1965-2009) for each grid point. The
reference period to compute the tercile categories is 1981-2010. The reference dataset is the ERAS reanalysis.
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4 Climate projections

The southern African region was classified as a climate change hotspot by the Intergovernmental Panel
on Climate Change (IPCC) Special Report on Global Warming of 1.5 °C (Hoegh-Guldberg et al., 2018).
This stems from the region being projected to become drastically warmer, and likely also drier
(Engelbrecht et al., 2015; Hoegh-Gulberg et al., 2018; Lee et al., 2021). In fact, the IPCC has recently
assessed that general trends of drying and substantial warming can already be detected across the
region. In eastern southern Africa, including the eastern escarpment region of South Africa and
Mozambique, climate models are projecting increases in intense rainfall events, despite the general
reduction in rainfall totals (Ranasinghe et al., 2021). This aspect of the projected climate change signal
can also already be detected in observed statistics of intense rainfall events occurring in eastern
southern Africa over the last few decades (Ranasinghe et al., 2021). In Mozambique increases in the
intensity of tropical cyclones (Fitchett, 2018), or at least in the rainfall they produce, likely play a role
in the upward trend in the number of recorded intense rainfall events. A recent climate change
attribution study has consistently assessed that climate change has likely resulted in an increase in
precipitation associated with the series of tropical cyclones that made landfall in Mozambique in 2022
(Otto et al., 2022).

Average temperatures have been increasing at about twice the global rate of temperature increase
over the southern African interior, with highest rates of temperature increased recorded over
northern Botswana and southern Zambia (Engelbrecht et al., 2015; Kruger and Nxumalo, 2016).
Extreme temperature events such as very hot days, heat-wave days and high fire-danger days have
correspondingly increased drastically in their frequency of occurrence over the last several decades
(Kruger and Sekele, 2013). It is certain that further increases in oppressive temperature events will
occur in the region for as long as global warming continues (Garland et al., 2015; Seneviratne et al.,
2021).

4.1 Characterization of climate projections for temperature and rainfall
4.1.1 Summary of findings from D3.1

GCMs are widely used in the assessment of current and future climates on global and regional scales.
Due to current knowledge on processes affecting the climate system on centennial timescales, models
are constructed from basic components (e.g., atmosphere, ocean, cryosphere, land surface). Since not
all these processes can be fully described from basic principles and fully resolved at GCM spatial scales,
several assumptions are needed in building GCMs. GCMs also need assumptions on external forcings,
e.g., anthropogenic greenhouse gas emissions and aerosols, resulting in a varied range of climate
simulations. D3.1 considered the more recent CMIP6 ensemble with an increased spatial resolution
over its predecessor (CMIP5), allowing for a better representation of smaller scale physical processes
(Eyring et al., 2016; O’Neill et al., 2017; Stouffer et al., 2017) as well as additional forcings which
include the Shared Socio-Economic Pathway (SSP) scenario matrix (Eyring et al., 2016; Riahi et al.,
2017; Stouffer et al., 2017). The main findings from this deliverable are the following:
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e Temperature:

O There is a cold bias across most of SADC during the warm season (DJF), with the west
coast being the only exception to this.

o JJA has a reduced cold bias and more variable results. These results could suggest a
muted seasonal cycle across CMIP6.

e Precipitation:

0 Wet seasons rainfall is varied across all models, but there tends to be more of a wet
bias.

O The bias is smaller in the drier months (JJA), but with a systematic bias over South
Africa.

The same analysis was conducted for future projections under RCP8.5:

e Temperature:
O Increase in mean temperature shown across all models ranging from 3 °C to 9 °C.
O Greatest increase in the southern and western interior of SADC.

o CMIP6 shows a stronger warming in the 95 percentiles of the ensemble range in
comparison to the CMIP5, CORDEX-AFR44 and CORDEX-AFR22.

e Precipitation (see Table 4 for summary):

o CMIP6 shows little consistency across the ensemble members, a result which is similar
to its predecessor (CMIP5)

o For most case study regions, there is no statistically significant increase or decrease
in mean precipitation over the December, January, February season. However, several
models agree that Tanzania could see a significant increase in rainfall.

O For the June to September season, there is still no significant change across most
models. However, a handful of models do show a significant drying across south and
eastern SADC, which would impact several case study countries.

(¢]

Table 4: summary of the direction of projected changes in rainfall by the end of the century across the regions
studied in D3.1. Where “+” indicates and increase “-” indicates a reduction and “=” indicates no significant
change. Th green boxes show areas with significant discrepancies between models.

Precipitation LOWER ESAF LOWER WSAF UPPER ESAF SEAF
MODEL DJF MAM 1A SON DIF MAM HA SON DIF MAM JA SON DJF MAM JA SON
el + - - - - - - - + + - - + + = | +
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4.2 Characterization of climate projections in simulating climate extremes
4.2.1 Global Circulation Models (GCMs)
4.2.1.1 Performance over case study countries

Here an overview is provided of the findings from two studies looking at TXx (Almazroui, Saeed, et al.,
2021) and RX1 (Dosio et al., 2021) for the CMIP6 ensemble over Africa to compare their performance
to that of RCMs. TXx was investigated by Almazroui et al. (2021), looking at spatial representations
and future projections of CMIP6 over the IPCC’s Special Report for Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation (SREX) regions. One finding from this
study was the marked similarity between the spatial representation of TXx between CMIP6 and the
CMIP5 ensemble (when compared to the study by Seneviratne and Hauser, 2020).

Dosio et al. (2021) conduct an evaluation of CMIP5 & 6, CORDEX and CORDEX-CORE future daily
precipitation over Africa. Like the TXx studies, there were no clear improvements between CMIP5 & 6
ensembles for this variable. RX1 is generally underestimated by CMIP5 and CMIP6, while CORDEX
datasets are showing a better agreement over the continent, except for Southern Africa, where
CORDEX have a positive bias.

When looking at the CMIP6 ensemble performance over Africa, the ensemble projects the greatest
increase in TXx over South Africa, with the tropical regions seeing the smallest increase. This was seen
globally, with extratropical regions projecting a greater increase in TXx than tropical regions. Future
projections of mean precipitation across the continent from this study found robust increases over
10-20 % (land coverage) of Southern Africa and ~35 % of East Africa. The remaining land coverage has
little agreement across the ensemble, highlighting the uncertainty of future rainfall in this region,
which is captured better in a larger ensemble. However, maximum daily intensity is projected to
increase in most models.

4.2.1.2 Limitations
Table 5: Limitations of the CMIP6 GCM models.

Limitation Impact

The coarse resolution of the GCM models impact
their  ability to recreate mesoscale
characteristics of rainfall that impact intensity.
This is where RCMs add value, helping in the
Coarse resolution | simulation of higher order precipitation
statistics and characteristics. This has been
noted in a number of studies (e.g. Dosio et
al. 2015; Pinto et al. 2016; Nikiema et al. 2017,
Fotso-Nguemo et al. 2017; Gibba et al. 2019;
Tamoffo et al. 2020; Gnitou et al. 2021)
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4.2.2 Regional Climate Model Datasets (RCMs)

4.2.2.1 CP4A

4.2.2.1.1 Performance over case study countries

The main incentive to use CP4A comes from its ability to better represent convection. It has been
shown that these convection permitting models are able to capture rainfall characteristics at an hourly
timescale (Stratton et al., 2018), which could be of use to some sectors. Conversely, RCMs with implicit
convection and GCMs (Nikulin et al., 2012) show deficiencies in the representation of the diurnal cycle
of precipitation. However, D3.3 found that there was no improvement to average rainfall, which has
been noted in another study (Finney et al., 2019). Additionally, its representation of RX1 was far wetter
than observations similar to the findings of Kendon et al. (2019), although still able to represent very
extreme hourly events. In our analysis, most case study countries had a bias of 50 — 60+ mm day?,
showing a need for bias correction before the data can be used.

4.2.2.1.2 Limitations

The evaluation of CP4A was limited to the historical period in D3.3 due to 'the limited 10-year time
slice making its application very limited across the case studies'. This was reason enough to exclude it
from further investigation; however, for full transparency; here an overview of additional limitations
of this dataset is also provided (Table 6) .

Table 6: Limitations of the CP4A model as stated in (Senior et al., 2020)

Limitation Impact

With one driving model, cannot capture uncertainty in the simulation
Single ensemble member | of global climate and how this impacts the Africa climate.

and driving model | Additionally, having a single ensemble member makes it difficult to
infer the significance of the results.

Single time slice available | Does not allow for mid-century projections and will limit the analysis
for future projections | on statistics of annual extremes.

In this model, all soil in the land component of the model is defined
as sandy.While a good agreement has been found on temperature
. indices, including extremes, it is not possible to infer that this
All soil has the same . . . . . "
i approximation will also be effective in the future climate. In addition,

roperties
prop impacts dependent on soil moisture and radiation will not be feasible
since these variables are not physically representative of the grid box

properties.

Despite these limitations there may be some use cases for this model for hourly extremes, for
instance, in hydrological modelling and catchment case studies. There is also the potential for sub-
daily analysis using CP4A, but the setup is restricted, only being able to represent the end of the
century under RCP8.5, and a GCM with a high climate sensitivity. Therefore, it is suggested that using
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this model on its own will not provide a true representation of future uncertainties and other models
should accompany it in any case study analysis.

4.2.2.2 CORDEX

4.2.2.2.1 Performance over case study countries

In addition to the analysis performed in D3.3, a country specific analysis of the short duration’s events
identified in D3.3 (TXx, TNn and RX1) is also provided. This overview combined with the analysis
already conducted allows us to provide a good overview of this dataset and its limitations over case
study regions.

Figure 58 to Figure 62 provide an average TXx, TNn and RX1 value for each case study country, compare
this to observations (Historical) and provide the climate change signal, using the RCP8.5 scenario. It is
worth noting that due to the size of Mauritius, analysis was not feasible over this country and has
therefore not been included in the following discussion.

Figure 58Figure 62 show the average TXx, TNn and RX1 observational biases (left hand columns) and
projected changes under RCP8.5 (right hand columns), over the case study countries. Here,
temperature biases and projections show change in °C, whereas RX1 shows bias from observations in
mm /day and future projections as percentage change from the historical climatology.

Tanzania

From D3.3 it can be seen the representation of TXx from the high-resolution model was good over
Tanzania. This is backed up by the averages taken over the country, with biases within +/- 1.5°C and
an ensemble average of 0.3 °C (

Figure 58). In the coarser resolution ensemble, there are slightly more varied results, with a colder bias
and averages ranging from 0.2 °C to -4.0 °C. TNn is not captured as well, with all models across all
resolutions underestimating TNn values. Here, biases range from 0.5 — 7.2 °C and both ensemble
averages are > 4 °C.

RX1 in the CORDEX AFR-22 ensemble has a very clear wet bias, visible in both the analysis in D3.3 and
in Figure 1. A strongest bias can be seen in the higher resolution CCCMA-CANRCM4 (+49.21 mm day
1). The CORDEX AFR-44 ensemble, again, has a far more varied output, with strong dry (RACMO22T =
>-30 mm day?!) and wet biases (CCLM4_8_17 up to 48 mm day!). However, it improves on the higher
resolution dataset when looking at the ensemble averages, possibly because of the larger size of the
CORDEX AFR-44 ensemble.

Projections for Tanzania see TXx and TNn values increasing for both variables by about 3 -5 °C. RX1 is

also projected to increase in all models over Tanzania, with ensemble averages suggesting a 28.51 %
increase in CORDEX AFR 22 and a 26.59% increase in CORDEX AFR-44.
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Figure 58: Averages for extreme variables (TXx, TNn and RX1) over Tanzania. With Historical representing their
bias compared to observations (CPC for TXx and TNn, and CHIRPS for RX1) and RCP8.5 comparing their end of
century climate projection (2070 — 2100) to their historical climatology (1975 — 2005).

Malawi

TXx over Malawi is well represented by these models at both resolutions (Figure 59). The higher
resolution CORDEX ensembles do tend to slightly overestimate TXx values here, with biases up to 2.6
°C (CCCMA-CANRCMA4). However, the MPI_ESM_LR driven models fall within 0.2 °C of observations
over Malawi. The CORDEX AFR-44 ensembles have mixed results, with RACMO22T and RCA4 generally
having a colder bias and REM02009 having a noticeable warmer bias. TNn again is underestimated by
most models apart from CCCMA-CANRCM4 (>-3°C) and some RCA4 runs (< -1 °C). Again, REMO models
have a notably warmer bias regardless of driving models. However, the general performance across
the ensembles is good with CORDEX AFR-22 having a bias of 2.8 °C and CORDEX AFR-44 being 1.9°C.
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RX1 is overestimated considerably by the higher resolution dataset, with an ensemble average of > 50
mm day'. The CORDEX AFR-44 models perform slightly better than their higher resolution
counterparts, with an ensemble average of 24.61 mm day . The RCA4 models are closest to observed
values, with most runs being within 10 — 15 mm day™. Regarding projections, they indicate again a rise
in TXx and TNn values of between 2 — 6 °C and RX1 values also project an ensemble average increase
of just over 17% at both resolutions.
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Figure 59: Averages for extreme variables (TXx, TNn and RX1) over Malawi. With Historical representing their
bias compared to observations (CPC for TXx and TNn, and CHIRPS for RX1) and RCP8.5 comparing their end of
century climate projection (2070 — 2100) to their historical climatology (1975 — 2005).

South Africa

South Africa had one of the more consistent spatial representations in D3.3 with most models
underestimating TXx, particularly around the high elevations surrounding Lesotho. The high-
resolution model ensemble has a more diverse output with CCLM5_0_15 and CANRCM4 downscaled
simulations having a warm bias (0 — 2.5 °C) and the REMO simulations having a colder bias (1.5 -2.4
°C). This variance results in an ensemble average within 0.1 °C of observations. The coarser resolution
ensemble has a clear colder bias here, the CCLM4_8 17 models are closest to observations (+/- 1°C),
but most downscaled simulations underestimate TXx by ~2 °C to 4 °C. For TNn, the CANRCM4 models
at both resolutions are the only models to significantly overestimate this variable (> 3 °C). The
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remaining models underestimate TNn with REMO being 4 °C to 5 °C warmer than observations. The
RACMO22T simulations show the best agreement over this region from both D3.3 and Figure 60 with
values close to observations.

RX1 is overestimated by all CORDEX AFR-22 models, with NORESM1_M — REM0O2015 member being
farthest from the observed value (+ 38.52 mm day). The CORDEX AFR-44 models are generally closer
to observations with RCA4 downscaled simulations performing well. There is still a wetter bias in the
REMO and CCLM4_8 17 downscaled models comparatively. TXx and TNn still show the standard
increases, with ensemble average increases of 5.1°C and 3.1 / 3.2 °C respectively. However,
projections for this country are interesting when it comes to precipitation. Both resolutions have
mixed results, with ensemble averages indicating a slight increase in RX1 values. However, when
looking at models individually RCA4 and CCLM (both resolutions) showed little change in RX1 values,
ranging between +/- 5mm day . REMO generally projects the greatest increase compared to the
historical climatology (up to 19 mm day %), although this is still small compared to other countries.
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Figure 60: Averages for extreme variables (TXx, TNn and RX1) over South Africa. With Historical representing
their bias compared to observations (CPC for TXx and TNn, and CHIRPS for RX1) and RCP8.5 comparing their end
of century climate projection (2070 — 2100) to their historical climatology (1975 — 2005).
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Zambia

TXx over Zambia is well represented by models at all resolutions. The higher resolution model does
have a warmer bias, with CCLM5 downscaling being furthest from observations (2 — 3 °C) and an
ensemble average of 1.9 °C warmer from observations. The CORDEX AFR-44 are variable with RCA4
and RACMO22T simulations underestimating TXx and the remaining simulations from the other RCMs
slightly overestimating this index. The ensemble average agrees with the observations. TNn, although
not indicated by the ensemble average, is also well represented by most models. Here, the REMO
simulations at both resolutions, underestimate TNn significantly (+ 5.6 °C to 7.1 °C). When removing
these simulations from the ensemble average, CORDEX AFR-22 and CORDEX AFR-44 do perform better
(0.83 °C and 2.1 °C respectively).

RX1 is overestimated by over 35 mm day® in all the CORDEX AFR-22 models, with CCCMA-CANRCM4
overestimating by 67.82 mm day™. In the CORDEX AFR-44 ensemble, the CCLM4 and REM02009
models both overestimate RX1, much like their higher resolution versions. RCA4 is closest to
observations (+ ~0 — 10 mm day?), and the RACMO22T simulations underestimates RX1 by 14 mm

-1

day™.
Projections show an increase of between 2.5°C and 5.9 °C for TNn, 3.6°C — 7°C for TXx and 1 -47.9%

for RX1 (Figure 61). There are some models in the high-resolution dataset that project a decrease in
RX1, however, these are negligible (0.8 — 1.4 %).
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Figure 61: Averages for extreme variables (TXx, TNn and RX1) over Zambia. With Historical representing their
bias compared to observations (CPC for TXx and TNn, and CHIRPS for RX1) and RCP8.5 comparing their end of
century climate projection (2070 — 2100) to their historical climatology (1975 — 2005).

Mozambique

TXx is slightly overestimated by the CORDEX AFR-22 ensemble (+ 2.0 °C ensemble average), with
CCLM5 downscaled simulations having the warmest bias (>2 °C). The CORDEX AFR-44 ensemble
performs better, with an average just 0.3 °C higher than observations. RCA4 and RACMO22T are the
only models to underestimate this variable. TNn is again overestimated by the CANRCM4 simulations
at both resolutions (> -2°C), while REMO runs all underestimate by 3 °C to 4.5 °C.

This country has one of the poorer representations of RX1. RACMO22T again has a dry bias and
understates this value by 14 — 19 mm day. REMO is again the wettest of the downscaling’s across
both resolutions with all simulations exceeding observations by >45 mm day?, with the worst
representation being off by over 80 mm day®. The RX1 projections are varied with projected
reductions of ~9% and increases of 40.78%. RCA4 simulations project the greatest decrease in RX1.
The degree of increase is not as clear with projections ranging from a few mm per day to over 40 mm
day . All models agree that TXx will increase and TNn will be warmer in the future, with increases in
both of between 2°C and 6 °C (Figure 62).
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Figure 62: Averages for extreme variables (TXx, TNn and RX1) over Malawi. With Historical representing their
bias compared to observations (CPC for TXx and TNn, and CHIRPS for RX1) and RCP8.5 comparing their end of
century climate projection (2070 — 2100) to their historical climatology (1975 — 2005).

4.2.2.2.2 Limitations
Here the limitations of the CORDEX ensemble are discussed (Table 7) as well as the ones from CORDEX

AFR-44 (Table 8). This provides a comprehensive overview of the limitations when reproducing and
projecting extreme events (TXx, TNn and RX1).

Table 7: Limitations of the CORDEX AFR-44 RCM dataset,

Limitations Impact

The CORDEX ensemble (at both resolutions) appears to have a weak
dependence on the driving GCM, with the RCM downscalings’
showing very similar spatial and quantitative results in particular for
the precipitation index, regardless of the driving GCM. This has also
been noted in other studies (Dosio et al., 2019, 2021; Gnitou et al.,
2021).

Reduction in spread / | Due to the similarities in RCM iterations, the range of uncertainty is

Weak dependence on GCM

uncertainties | reduced.
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Although some models do perform well, there is still a cold bias for
TXx and a warm bias for TNn, although generally TXx is better

represented. This was also found in a study of CORDEX over other
Temperature . .
. regions (Yu et al., 2021), where the representation of TXx was more
representation . . .
skilful than TNn. It has also been shown that some models in this

ensemble exhibit a temperature bias over the ITCZ due an inability to

correctly represent clouds (Kothe, Panitz, & Ahrens, 2014).

Table 8: Limitations of the CORDEX AFR-22 RCM dataset

Limitations (CORDEX AFR-22) Impact
The limited ensemble size of the CORDEX AFR-22 set limits its
range of uncertainty. This leads to inevitable skewing of

Small ensemble size | . = )
distributions of climate change responses should there be an

outlier in the ensemble.
This ensemble was considerably wetter than CORDEX AFR-44
models (~20+ mm day) over southern Africa. With precipitation
. data, the limited gauge data available cannot be ignored, resulting
Much wetter bias than coarser | ) ) ] ) ]
resolution model in obsejrvatclo'na'l uncerta‘lnty. With the d?ta belng‘of a hlghejr
resolution it is likely to pick up more of this uncertainty and this
will affect the perceived bias, much like that seen in Gnitou et al
(2021).
Publications have already shown that the CORDEX AFR-44 dataset
is able to represent extreme events well (Omar & Abiodun, 2017;
Abiodun et al., 2020; Diallo et al., 2015; Pinto et al., 2016). Here
CORDEX AFR-22 does not seem to show an improvement in
comparison with CORDEX AFR-44 being outperformed by the
Limited added value | coarser dataset at times. This could be due to several factors,
compared to CORDEX AFR-44 | including the limited size of the CORDEX AFR-22 dataset.
However, there have also been studies that suggest an increase in
horizontal resolution alone does not lead to an increase in
performance, as these models need to be tuned and re-
configured to work at this resolution to see an improved

performance (Panitz et al., 2014; Sgrland et al., 2021).

4.2.2.3 CCAM

The Conformal-Cubic Atmospheric Model (CCAM) is a variable-resolution global climate model
developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO, McGregor,
2005). CCAM is coupled to a dynamic land-surface model CABLE (CSIRO Atmosphere Biosphere Land
Exchange model). The model was applied at the Global Change Institute in South Africa, as part of the
FOCUS-Africa project, to downscale ERA-Interim reanalysis data to an 8 km spatial resolution over
southern Africa, for the period 1979-2017. The experimental design starts by nudging CCAM in the
ERA Interim data to obtain 50 km quasi-uniform resolution simulations (as described by Horowitz et
al. (2017)) - forced at its lower boundary with the bias-corrected sea-surface temperatures (SSTs) and
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sea-ice concentrations (SICs) from a CMIP5 GCM simulation. No atmospheric forcing from the GCM is
applied. This approach avoids biases from the GCM, like for example the common Pacific cold tongue
bias or the overestimation of SSTs along the west coast of southern Africa. The 8 km resolution runs
over southern Africa were spectrally nudged within the output of the 50 km resolution global
simulations following the approach of Engelbrecht et al. (2019).

A second set of CCAM simulations analysed has been obtained by downscaling the projections of
future climate change of 6 CMIP5 GCMs under a low mitigation scenario, Representative
Concentration Pathway 8.5 (RCP8.5), for the period 1961-2100. The GCM simulations were first
downscaled to 50 km resolution globally Archer et al. (2018), with additional details in (Engelbrecht et
al. (2015) and subsequently to 8 km resolution.

4.2.2.3.1  Performance over case study countries

This model has a cold bias over much of Southern Africa, with the exceptions of Botswana and
Namibia, which are warmer than the observation (D3.1, 2021). Precipitation shows a wet bias which
peaks in the eastern escarpment and a dry bias across the Cape Fold Mountains. These biases are
smaller in comparison with the other simulations considered in this study, very likely an effect of the
use of observed SST in the historical simulation (D3.1, 2021). The simulations are indicative of general
rainfall decreases over southern Africa for the period 2089-2099 for RCP8.5 with respect to 1995-2005
(D3.1). An important exception is summer, for which most models project rainfall increases over the
eastern escarpment regions. In several of these simulations, rainfall growth stretch into southern
Mozambique, and in one of them the increases stretch westwards into the southern African interior.
Substantial rainfall reductions in winter rainfall are projected, consistently across the simulations.
Drastic warming is projected for all seasons, exceeding 5°C over extensive portions of the interior in
all the projections (D3.1). The strength of these warming patterns seems to follow the climate
sensitivity of their driving GCMs, a feature expected from downscaled simulations for which a good
degree of consistency in the climate change patterns of the driving GCM is expected.

Extreme indices from CCAM have not been estimated. Surface daily variables in standard format from
this dataset are not yet available, however they are expected to be available for the development of
climate scenarios in the remaining part of this work package.

4.2.2.3.2 Limitations

Table 9: Limitations of the CCAM dataset

Limitations Impact
Although the 5 GCMs selected for the CCAM experiment give a good
Limited representation of | representation of GCM uncertainty on global scale, they do not

GCM uncertainy | necessarily represent the full uncertainty over Southern Africa for the
indices considered in this study.

) CCAM s still based on the use of parameterized convection,
Diurnal cycle of ) o
therefore it shares the same systematic issues as standard RCM and

precipitation not resolved o
GCM (Nikulin et al, 2012)
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4.2.3 Recommendations for subsequent tasks

Best practices in creating climate scenarios from multimodel datasets are mainly limited to GCM
ensembles (e.g., seeMcSweeney et al., 2015). The inclusion of downscaling, with its additional
uncertainty and its expected strong dependence on the driving GCM condition adds another
dimension to the complexity of this problem. This is further increased when attempting to use all
climate projections datasets in the development of climate scenarios. So here some
recommendations, based on the evaluation done in this report and that of D3.1.

The first conclusion is that the CORDEX models at both resolutions should be used for climate
projections over the case study countries. Here, the suggestion is to use as many of the ensemble
members as possible to account for the widest range of uncertainties. When GCM-RCM combinations
are duplicated across resolutions (e.g., CCCMA-CANRCM4 and the updated REMO and CCLM RCMs) it
is plausible to only use the higher resolution members. Furthermore, for precipitation - due to the
larger dependence on the RCM over the driving model - it is possible to take an ensemble average of
all the GCM-driven simulations for each RCM, resulting in a single representation of each RCM. Some
considerations that would need to be taken for this approach, would be the weighting of models such
as RCA4, which makes up almost a third of the ensemble, as well as the reduction in range of
uncertainty. This is an approach that could be tackled in many ways and add substantial, unnecessary
uncertainty to the creation of climate scenarios. This problem, and the associated issue of how to
integrate climate projections from different multimodel ensembles, is the subject of current, active,
research, which will hopefully lead to the development of widely accepted best-practices for the use
of these datasets in the future tasks.

4.3 Assessment of projections focusing on variables related to crop production

Climatic conditions play an important role in influencing the environment, society, economy, and the
associated cultural practices. As the climate system of southern Africa countries becomes warmer
(WMO, 2019; 2021), the region becomes also more vulnerable to changes in temperature and
precipitation. In particular, crop production and food security are at great risk. The economies of
southern African countries and their rural households depend largely on agriculture (ADB, 2019),
making this sector a key component of growth and development. However, agriculture in the region
is largely based on smallholder farming, with low use of agricultural inputs including irrigation,
fertilizers, and pesticides. This makes crop production extremely sensitive to climate fluctuations,
which may thus hamper livelihoods, food and water security and long-term development in the region
(WMO, 2021).

In the future, crops are expected to face episodes of extreme temperatures and changes in the timing
and characteristics of the rainy season, including frequency and distribution of rainy days (IPCC, 2019;
2021). Models project a general increase in precipitation intensity and decrease in frequency, resulting
in more dry days and longer dry spells (Funk et al. 2019; Giorgi et al. 2019; Allan et al. 2020; Wainwright
et al. 2021). Since reductions in water availability limit crop growth, longer dry spells coupled with the
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shift in the timing of the rainy season may have negative impacts on crop yields and food production
(Rockstrom et al. 2010).

Typically, climate observations correspond to quantitative variables with a direct comprehensible
physical meaning such as total precipitation received over a defined period, daily maximum, or
minimum temperature. Yet the environmental, societal, and economic impacts of climate features in
crop production, depend on specific climate conditions or event characteristics over a time-period.
These conditions or events include the timing of the rainy season, the long-term cumulative climate
conditions, the extreme values recorded over a period, the frequency of days with specific
characteristics and the frequency of events above or below specific thresholds (Wainwright et al 2017,
Hariadi et al, 2022; Nkrumah et al, 2022). To capture and quantify the specificity of these climatic
impact factors, much effort has been put into developing agroclimatic indicators which can be
employed on different natural systems and socioeconomic sectors (Giorgi et al. 2019; Wainwright et
al. 2021). Particularly relevant to crop production systems are heat stress under night and day time,
late onset and shorter duration of the rainy season, and length of dry spells (Harrison et al. 2011; Gitz
et al., 2016; Sun, et al. 2019; Shah et al. 2021).

General Circulation Models (GCMs) from the Coupled Model Intercomparison Project (CMIP) are the
most credible tools to project future climate (Randall et al., 2007). Studies based on CMIP models
show that the representation of agroclimatic indicators are in many ways model dependent (James et
al, 2008; Moise et al, 2015). Consequently, it is very relevant to organize studies aimed at evaluating
the performance of CMIP6 models in regard to the accurate representation of agroclimatic indicators
that are relevant for crop production. The ability to simulate climate of individual CMIP6 models can
vary depending on which aspect of a model simulation is considered (Taylor et al. 2012; Eyring et al.,
2016). Although it may be difficult to select the best performing models, it is possible to identify a
subset of models that have a higher accuracy in representing critical aspects of the climate such as
parameters relevant for crop production (Evans et al 2013; CSIRO and Bureau of Meteorology, 2015).

In this section, the ability of eight CMIP6 historical climate models in accurately representing
agroclimatic indicators relevant for crop production in the southern Africa region is examined. The
growing season agroclimatic indicators include number of rainy days, number of light-to-medium and
very heavy rainy days, longest dry spell, number of extreme hot days and nights and the rainy season
calendar parameters (onset, cessation, and duration). These indicators are critical to managing crop
production processes and directly relevant to decision support for strategic planning of crop
production for years to come. Such information on performance of individual models is relevant when
users are choosing a subset of models for application in impact assessment and to define the
confidence in projections. In particular, the findings of similar studies are relevant for crop producers,
breeders, and government policy makers. At the same time, the results from the model evaluation are
very important when choosing host models for dynamical downscaling.

4.3.1 Study Area

This study focuses on evaluation of CMIP6 model performance over the southern Africa domain. This
areais predominantly a unimodal rainfall region in which the rainy season spans from October to April.
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The target unimodal rainfall region was determined by objective empirical orthogonal function (EOF)
analysis of continuous monthly total rainfall (Figure 63).

Rainfall Regiems
Bimodal
B unimodal
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Rainfall totals (mm)
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Figure 63: The target study area, presented as a unimodal rainfall regime (top panel); the annual cycle of mean
monthly rainfall totals for the unimodal regime (bottom panel).

4.3.2 Data and methods
4.3.2.1 CMIP6 Models

The Coupled Model Intercomparison Project (CMIP6) daily historical experiment data (Eyring et al.,
2016), which cover the period from 1980 to 2010, has been obtained from the Climate Data Store
(CDS) of the Copernicus Climate Change Service (C3S). The GCMs that have been evaluated in this
study are shown in Table 10 together with their horizontal resolutions and modelling centers. The
GCM outputs employed in this study include daily maximum near-surface air temperature, daily
minimum near-surface air temperature and daily precipitation. Models have been selected based on
the availability of the required daily data for historical period.
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Table 10: Description of the CMIP6 climate models used in the study.

Model Name

Modelling Centre

Horizontal Resolution

Reference

Beijing Climate

The model was run in native nominal
resolutions: (i) atmosphere, 250 km (ii)

Tongwen Wu

Cambiamenti
Climatici)

(iv) ocean, 100 km and (v) sea ice, 100
km.

BCC-ESM1 atmospheric chemistry, 250 km (iii)
Center (BCC) i et al., 2020
land, 250 km (iv) ocean, 50 km and (v)
sea ice, 50 km.
The model was run in native nominal
. resolutions: (i) aerosol, 500 km (ii)
CCCMA (Canadian .
. atmosphere, 500 km (iii) atmospheric
Centre for Climate ] ) Swart et al.,
CanESM5 ) chemistry, 500 km (iv) land, 500 km (v)
Modelling and ) . 2019
. land ice, 500 km (vi) ocean, 100 km
Analysis) B ) .
(vii) ocean biogeochemistry, 100 km
and (viii) sea ice, 100 km.
The model was run in native nominal
CMCC (Centro Euro- i . ..
. resolutions: (i) aerosol, 100 km (ii)
Mediterraneo per | Lovato et al.,
CMCC-ESM2 atmosphere, 100 km (iii) land, 100 km

2022

CNRM-CM6-1-HR

CNRM-CERFACS
(National Center for
Meteorological
Research, Météo-
France and CNRS
laboratory)

The model was run in native nominal
resolutions: (i) aerosol, 100 km (ii)
atmosphere, 100 km (iii) atmospheric
chemistry, 100 km (iv) land, 100 km (v)
ocean, 25 km (vi) seaice, 25 km.

Voldoire et
al., 2019

EC-Earth3-CC

EC-Earth-Consortium

The model was run in native nominal
resolutions: (i) atmosphere, 100 km (ii)
land, 100 km (iii) ocean, 100 km and
(iv) seaice, 100 km.

(Ralf Doscher
et al., 2022)

EC-Earth3-Veg-LR

EC-Earth-Consortium

The model was run in native nominal
resolutions: (i) atmosphere, 250 km (ii)
land, 250 km (iii) ocean, 100 km and
(iv) seaice, 100 km.

(Ralf DOscher
et al.,, 2022)
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NOAA-GFDL (National
Oceanic and
Atmospheric

The model was run in native nominal
resolutions: (i) aerosol, 100 km (ii)
atmosphere, 100 km (iii) atmospheric

(Dunne et al.,

National Institute for
Environmental
Studies (CCSR-NIES)

km.

GFDL-ESM4 L . chemistry, 100 km (iv) land, 100 km (v)
Administration, ) . .. | 2020)
) . land ice, 100 km (vi) ocean, 50 km (vii)
Geophysical Fluid ] ]
] ocean biogeochemistry, 50 km and
Dynamics Laboratory) .
(viii) sea ice: 50 km.
MIROC (Atmosphere
and Ocean Research ) ) )
) The model was run in native nominal
Institute (AORI), i ) i ) )
. resolutions: (i) aerosol, 250 km (ii) | (Hiroaki
Centre for Climate
MIROC6 atmosphere, 250 km (iii) land, 250 km | Tatebe et al.,
System Research - . .
(iv) ocean, 100 km and (v) sea ice: 100 | 2019)

4.3.2.2 Evaluation Dataset

At the core of every model evaluation there is a reference dataset to which model simulations can be

compared. In this study, the daily gridded climate dataset from AgERAS (obtained from the European

Copernicus Program, AgERAS5, 2021) is employed to evaluate GCMs considering the maximum air

temperature, minimum air temperature, rainfall, and solar radiation.

4.3.2.3 Agroclimatic indicators

In this work the focus is on the agroclimate indicators that could bring severe loss to crop yields, such

as growing region exposure to critical thresholds and events above which yield declines occur (Zhu

and Troy, 2018). These indicators have been widely used to study observed and modeled climate

variability and impact on crop production across the globe (Wilson et al. 2022; Kim et al. 2020;
Wainwright et al. 2022). They can be found in Table 11.

Table 11: Description of agroclimatic indicators used in the study

Indicators Description Definition Units
Number of rainy . .
NRD Days when rainfall is >= Imm Days
days
Number of light
Rle20 to medium Days when rainfall is at most 20mm Days
rainfall days.
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Number of very . .
Rge20 . Days when rainfall is at least 20mm Days
heavy rain days

Maximum number of consecutive dry
LDS Longest dry spell . Days
days with PR<1 mm

Number of

TXge35 Number of days when Tx >= 35 °C Days
extreme hot days
Number of
TNge20 extreme hot Number of days when Tn >= 20 °C Days
nights
Onset day of the Onset day of the rainy season in day
onsetDOY . DOY
rainy season of the year (DOY)
. Cessation day of Cessation day of the rainy season in
cessationDOY . DOY
the rainy season day of the year (DOY)

Duration of the . .
seasDur . Duration of the rainy season Days
rainy season

4.3.2.4 Definition of the onset and cessation of the rainy season

Several climatic factors such as seasonal rainfall amount, intraseasonal rainfall distribution and dates
of onset and cessation of the rains influence crop yields and determine the crop production calendar.
In particular, the onset of the rainy season appears to be the most crucial information for crop
production management since it determines the planting period (Marteau et al., 2011). Indeed, a slow
rainy season onset is a reliable harbinger of drought in most food insecure regions of Sub-Saharan
Africa (Shukla et al. 2021). Numerous definitions exist for identifying the onset and cessation of the
rainy season. In past studies, the onset of the rainy season has been either considered as the start of
the rainy season, and hence was identified based on rainfall data, or was identified based on an
agroclimatic approach. The latter strategy defines the onset of the rainy season as the optimal date
that ensures sufficient soil moisture during planting and early growing periods to avoid crop failure
after sowing (Mugalavai et al., 2008; Marteau et al., 2011), and requires information both relative to
rainfall and temperature as well as to soil features of the area under study.

A normal cropping period is defined as one when there is an excess of precipitation over potential
evapotranspiration (PET). Such a period meets the evapotranspiration demands of crops and
recharges the moisture of the soil profile (FAO 1978; 1977; 1986). Thus, onset will start on the first
day after 01-Sep when the actual-to-potential evapotranspiration ratio (Ea/Ep) is greater than 0.25
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and is followed by a 20-day period in which plant available water (PAW) remains above 10mm. The
logic behind is a consistent available soil moisture of 10 mm and above for the plant to extract will
support vegetative growth (Mugalavai et al., 2008). Similarly, the rainy season will end on the first day
after 01-Mar when Ea/Ep <= 0.25 and followed 12 consecutive non-growing days (PAW < 10mm).

4.3.2.5 Evaluation metrics

To allow comparing all data products, both CMIP6 and AgERA5 data have been resampled to a
common 0.5° x 0.5° grid using a bi-linear remapping procedure using a 'raster' package in R statistical
programming environment. The analysis in this study is carried out with respect to the historical period
1980 - 2010. The performance metrics represents the ability of the CMIP6 models to accurately
capture and reproduce the observed spatial pattern (seasonal climatology) and temporal variability
(inter-annual) of agroclimatic indicators over the study area.

Percent bias (PBIAS) has been used to evaluate the performance of the CMIP6 models in simulating
the spatial pattern of seasonal climatology of agroclimatic indicators. The PBIAS measures the average
tendency of the model values to be larger or smaller than the observed ones. The optimal value of
PBIAS is 0.0, with values closer to zero indicating better model performance. Positive values indicate
overestimation bias, whereas negative values indicate model underestimation bias.

n A. — .
PBIAS = 100 * M

i=1%i

Where ¥; is the seasonal summary, totals over November to April period, of agroclimatic indicators
from CMIP6 models and x; is indicators from observations for the same period.

Taylor diagrams have been employed to quantify the degree of correspondence between CMIP6
model simulations and observation, taking into consideration the inter-annual variability of seasonal
summary of indicators, which are shown by correlation coefficients, root mean square error (RMSE),
and the normalized standard deviations (Taylor 2001). When the correlation coefficient and the
standard deviation are close to 1 and the RMSE is close to O, this is indicative of the best match
between observation and model simulation.

To evaluate the inter-annual variability of the country averaged seasonal summary of agroclimatic
indicators, the root mean square error (RMSE), and the index of agreement have been computed. The
index of agreement (d) is a standardized measure of the degree of model prediction error and varies
between 0 and 1 (Willmott, 1981). A value of one indicates a perfect match, while 0 indicates no
agreement. The index of agreement can detect additive and proportional differences in the observed
and simulated means and variances. However, it is overly sensitive to extreme values due to the
squared differences (Moriasi et al., 2007).

D=1 (X — x;)?

(- Gl e G|
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Where X; is the seasonal summary, totals over November to April period, of agroclimatic indicators
from CMIP6 models and x; is indicators from observations for the same period, whereas ‘i’ runs from
1981 to 2010 (n = 30 years).

4.3.3 Results

4.3.3.1 Spatial Pattern

The climatic patterns of the indicators used are shown in Figure 64 andFigure 65, which provide a
measure of the seasonal behavior of the area under analysis. The number of rainy days (NRD),
including light to medium (Rle20) and very heavy rainy days (Rge20) exhibits a decreasing gradient
when going from the north (humid) and northeastern (sub-humid) part to southwestern areas (arid)
with the lowest values occurring over the shore west of the Kalahari Desert, and the highest values
occurring over the Congo rainforest. Dry spells of length greater than 8 days are common on the arid
and semi-arid parts of central Tanzania, southern Mozambique, parts of Zimbabwe and Botswana,
eastern South Africa, and most of Namibia. Those areas also show a frequent number of extreme hot
days (Figure 64). Such prolonged dry spells coupled with frequent extreme hot days and nights may
lead to significant stress on crop growth resulting in low crop productivity and hampering food security
in the area.

Total (Nov - Apr) number of rainy days (NRD) Total (Nov - Apr) number of light o medium rainy days (Rle20) Total (Nov - Apr) number of very heavy rainy days (Rge20)

T T T T T T T T T T
W0'E 20°E I0°E A0'E SI'E 10°E 2'E E 40°E S0'E 10°E 20°E N'E W'E S0'E
Longest (Dec - Mar) dry spell (LDS): seasonal Total (Nov - Apr) number of extreme hot days (TXge35) Total (Nov - Apr) number of extreme hot nights (TNge20)

80

60

40

20
T

T T T T T T T T T
10E 20°E W0'E 40°E S0'E 10°E 20°E W'E 0'E S0°E WE 20'E WE 40'E S0°E

Figure 64: Spatial pattern of mean seasonal agroclimatic indicators: climatology over 1981 to 2010 period.

The spatial pattern of the earliest, mean and late onset and cessation of the rainy season is also
presented, as well as its shortest, average and longest duration during 1980 to 2010 period (Figure
65). To correctly inform cropping practices it is useful to know the typical or time-mean onset date for
a particular location. Knowledge of a mean date allows the calculation of onset date anomalies. The
mean onset of the rainy season occurs in the beginning of October over the southern part of DRC,
Northern Angola and the southeastern part of South Africa. During November and December, it
gradually moves towards the south, initiating in later seasons for the countries at higher southern
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latitudes. By late January and February, mean onset is achieved towards all the southern and
southeastern arid and semi-arid areas. On average, the rainy season ends starting from late April at
the eastern and southwestern parts, and the cessation progresses over time to the northwestern and
western regions, until late July.

Onset Cessation Duration

Earliest Earliest Shortest

DOY (date) DOY (date)

178 (Jun-27) 229 (Aug-17)
168 {Jun-17) 225 (Aug-13)
159 (Jun-08) 221 | Aug-09)

150 (May-30)
140 {May-20)
131 (May-11)
122 {May-02)

217 (Aug-05)
214 {Aug-02)
210 (Jul-29)

204 {Jul-25}

112 {Apr-22) 202 (Jul-21)

103 {Apr-13) 198 (Jul-17)
06 (Apr-iM) 195 (Jul-14)
084 (Mar-25) 191 (Jul-10)

078 (Mar-16) 187 (Jul-06)

(s { Muar-07) 183 (Jul-02)
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06
157 (Dec-23) 153 (Jun-02) Loneest "
| MR (Dec-14) | 149 (May-29 o
339 (Dec-05) 145 (May-25) ?;‘
329 (Nov-25) 141 (May-21) 3
(5
320 (Nov-16) 138 (May-18) o
311 {Nov-07) 134 (May-14) 41
301 (Ot-28) 130 (May-10) :;
292 (0kt-19) 126 (May-06) ;|
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Figure 65: Spatial pattern of the earliest/shortest, mean, latest/longest onset cessation and length of growing
season: climatology over 1981 to 2010 period.

The simulated seasonal climate means of 9 agroclimatic indicators have been compared with
observation for the reference period of 1980 - 2010. The percentage bias of seasonal agroclimatic
indicators by CMIP6 models is given in Figure 66Figure 67.. Overall, most models overestimate the
number of rainy days (NRD), number of light to medium rain days (Rle20) and underestimate the
duration of the longest dry spell (LDS), except for CMCC-ESM2. The seasonal number of extreme hot
days (TXge35) is overestimated by BCC-ESM1, GFDL-ESM4 and MIROC6, while the rest of the models
underestimate it. Both those models and CanESM5 overestimate the mean seasonal total number of
extreme hot nights (TNge20).
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Figure 66: Percent bias (%) of CMIP6 agroclimatic indicators.

Most of CMIP6 models show consistency in estimating the mean onset, cessation, and duration of the
rainy season. Generally, an early mean onset and longer mean duration of the rainy season is produced
by most of the models except for CNRM-CM®6 (Figure 67). The percentage bias for mean cessation of
the rainy season is less variable across models than that of the onset.
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Figure 67: Percent bias (%) of CMIP6 agroclimatic indicators.

The performance of the CMIP6 models in simulating the spatial pattern of observed seasonal
climatology is presented using a Taylor diagram (Figure 68).The diagram consists of three parts: i)
interannual correlations indicated by black lines with labels on the outward extension of the line, ii)
centered root-mean-square-error differences (CRMSE), indicated by labeled dark golden dashed
contour lines and, iii) the ratio of variances (normalized standard deviation). The statistic is normalized
by dividing both the CRMSE and the standard deviation of the model values by the standard deviation
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of observations. The baseline reference point is indicated by a purple dot where correlation is 1 and
CRMSE is 0. The more the model points are close to this purple point, the more they are similar to the

reference.
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Figure 68: Taylor diagrams showing the performance of CMIP6 models in simulating the spatial pattern of
observed seasonal climatology of agroclimatic indicators.

In general, all models show good agreement with observed values (r > 0.6) in representing the spatial
pattern of the seasonal climatology. The spatial standard deviation of agroclimatic indicators
simulated by the models is relatively higher, except for the simulation for the longest dry spell (LDS).
Higher CRMS errors are associated with BCC-ESM1 and MIROC6 when simulating the number of
extreme hot days (Txge35). It is also worth mentioning that the models struggled in simulating the
number of extreme hot nights (TNge20).

4.3.3.2 Temporal variability

The performance of CMIP6 models in simulating the observed interannual variability of seasonal
agroclimatic indicators can also be depicted with a Taylor diagram (Figure 69). Interannual correlations
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are indicated by black lines, while interannual CRMSE are indicated by labeled dark golden dashed
contour lines. The statistic is normalized by dividing both the CRMSE and the standard deviation of
the model values by the standard deviation of the reference.
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Figure 69: Taylor diagrams showing the performance of CMIP6 models in simulating the observed interannual
variability (1981 - 2010) of seasonal agroclimate indicators.

The model values all have higher variation (normalized standard deviation > 1) than the reference and
have lower levels of agreement (r < 0.4). In general, the quality of the models is fair (CRMSE < 2).
However, models such as BCC-ESM1 and MIROC6 show relatively higher error values in simulating
TNge20, while EC-Earth3-CC have high errors in simulating cessationDOY. Relatively speaking, the
models have a higher level of quality variation in simulating TNge20 than for other agroclimatic
indicators.
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Figure 70: The 'portrait' diagram for evaluation score of country average agroclimatic indicators simulated by
the CMIP6 models

The performance has been summarized for individual models for agroclimate indicators using a
'portrait' diagram (Figure 70). The portrait diagram depicts the magnitudes of RMSE and index of
agreement for each country, showing average agroclimatic indicators by rows, and models by
columns. The evaluation has been computed for year-to-year variation (1981 - 2010) of the growing
season summary of agroclimatic indicators. The results show that most of the models perform
considerably well in simulating most indices. Once again, high values of RMSE characterized the
simulations for the number of extreme hot nights (TNge20) for all models except EC-Earth3-Veg-LR.
Lower index of agreement in simulating seasonal number of extreme hot days (TXge35) has been
observed over Malawi, South Africa and Tanzania.

4.4 Process based assessment of global and regional projections

The objective of this section is to identify projected changes in atmospheric processes that influence
rainfall over Malawi. It is complementary to work done in Work Package 3 (WP3) that reports on
moisture fluxes and rainfall having characterized the impact of climate variability and future change
on hydropower generation in Lake Malawi and the Shire River basin.

Here the atmospheric processes have been considered at two scales, namely teleconnective and
synoptic scales. These scales have been selected because teleconnections such as the El Nino Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD) have been shown to affect rainfall in the Lake
Malawi catchment region and synoptic scale processes facilitate the advection of moisture into the
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region (as described in WP3, D3.2). The rainfall control of these processes has been quantified during
the observed period and projected changes under the SSP245 emissions scenario.

4.4.1 Assessment of ENSO and 10D teleconnections in the Lake Malawi catchment

The aim of this section is to investigate whether CMIP6 models accurately capture teleconnections
affecting rainfall in the Malawi catchment region, relative to that captured in the ERA5 reanalysis
model. The Indian Ocean Dipole (IOD) and El Nifio-Southern Oscillation (ENSO) indices have been
qguantified as they exert an interannual control on rainfall in the study region and evaluate the ability
of CMIP6 GCMs to capture these controls and how they are projected to change in the medium term
(2030 to 2059) under the SSP245 scenario.

4.4.1.1 Data and methods

The period 1961-2014 has been considered to ensure ERA5 and 24 CMIP6 historical runs are sampled
over the same period, which provided a sample size of 669 3-month seasons over which to conduct
the analysis of the events and an evaluation of the GCMs. The projected time horizon is chosen as
2030-2059 which constitutes the IPCCs medium time horizon; and SSP245 is selected as it represents
the likely highest emissions scenario to be realized (as opposed to higher scenarios such as SSP585).
Regarding the Lake Malawi catchment, it is defined as a box spanning 33E to 35.5E and 14.5S to 9.25S.

The Oceanic Nino Index (ONI) is used to define ENSO events. This is calculated as the 3-month rolling
mean of Sea Surface Temperature area-weighted across the Nino 3.4 region [120W - 170W 5N - 5S].
While a warm (El Nifio) event is defined when the SST anomaly, calculated against a rolling 30-year
base period, exceeds 5 degrees for a minimum of 5 consecutive months, and a cold (La Nifia) event
when the SST is below 5 degrees.

The Indian Ocean Dipole (I0D) is defined as the area-weighted monthly SST difference between the
tropical western Indian Ocean [50E - 70E, 10S - 10N] and the southeastern tropical Indian Ocean [90E
- 110E and 10S - Equator]. Like the ONI, positive events are defined when the 3-month rolling mean
of this index exceeds 0.5 degrees for a minimum of 5 consecutive months, and a negative I0OD event
is defined when the index is less than 0.5 degrees.

To study the impact these modes of variability have on rainfall in the Lake Malawi catchment, the
identified periods where an event ( +ve/-ve ENSO and +ve/-ve 10D), defined as occurring across 3
consecutive months, have been compared against the same 3 months when that event is not evident.

4.4.1.2 Results

The Lake Malawi catchment appears to be at the confluence of different anomaly modes in both 10D
and ENSO (Figure 71). It is only during negative IOD and negative ENSO events that the catchment
experiences statistically significant drier anomalies. Spatially, ENSO has a greater (more statistically
significant) influence over the southern region of the catchment and the 10D, in the northern areas.
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Figure 71: Precipitation anomalies associated with each event over the period 1961-2014. Cross hatching
indicates significance at p<0.01. Red box indicates Malawi catchment.

The 24 GCMs are evaluated against the ERAS for their ability to capture rainfall anomalies associated
with each event (Figure 72). Spatial rainfall anomaly patterns associated with each of the event modes
are generally captured in the GCM ensemble mean except for +|OD/-ENSO which produces a positive
rainfall anomaly over the southern Africa interior, whereas in the ERAS this is a negative anomaly. The
magnitude of the anomaly is generally smaller in the GCM ensemble mean. Over the catchment region
the rainfall anomaly patterns are very similar. Therefore, the conclusion is that the GCMs adequately
simulate the spatial distribution of rainfall anomalies in the study region.

Projected rainfall anomaly patterns of each event mode for the period 2030-2059 under the SSP245
scenario is shown in Figure 73. The spatial distribution anomalies for each mode are similar to those
in the historical simulations (Figure 73a) and differences between the two periods are low under the
pure IOD modes (Figure 73b). It is only under the +I0D/-ENSO mode, which in the ERAS5 data indicate
much wetter than average anomalies, that there are larger differences between the historical and
future periods. This suggests that in future such events may be wetter than in the historical period
over the region. However, it must be noted these events are very rare (see next section and Figure
73).
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Figure 72: Precipitation anomaly of the 24-member GCM ensemble associated with each event over the
historical period 1961-2014.
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Figure 73: CMIP6 anomalies of rainfall during events for (a) the period 2030 to 2059 under the SSP245 scenario
and (b) the difference between this and the historical period.

Although the spatial distribution of rainfall anomalies associated with the forcing modes are well
represented by the 24 GCMs, it is still necessary to understand the local expression of rainfall under
each forcing mode. This has been done through analyzing rainfall as a percentile of the full rainfall
distribution for the region, associated with the occurrence and co-occurrence of events. The frequency
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for each event in the model has also been identified and compared to the ERAS frequency, and how
these change into the future.

Rainfall associated with the occurrence and co-occurrence of events is presented in Figure 74 for ERA5
(bottom row), and 24 GCMs over the common period of 1961 to 2014 as a percentile of the full rainfall
distribution for the region (Figure 74a). For example, considering the ERA5 reanalysis row and the
positive 10D event column, this is interpreted as that during a positive IOD event the rainfall typically
falls into the 73rd percentile; then for a negative 10D event, it falls into the 24th percentile. Largest
rainfall percentiles are evident during co-occurring events of +I0D and +ENSO (81st percentile) and
lowest rainfall percentile during the co-occurring events of -IOD and -ENSO (17th percentile). Seasons
where pure ENSO or I0D events occur are common, whereas seasons where both events co-occur are
rare (Figure 74b).

Rainfall distribution anomalies are statistically significant at the p < 0.01 level during +I0D, -10D,
+IOD/+ENSO, and -IOD/-ENSO, Figure 74a has been masked to only show statistically significant
anomalies at p < 0.01. Positive IOD events are associated with higher rainfall percentiles (wetter), -
IOD events with lower rainfall percentiles (drier), co-occurring +10D and -ENSO (wetter) and -10OD and
-ENSO (drier). However, the frequency of the co-occurring modes is low compared to IOD-only events.

Therefore, based on the ERA5 data the conclusions are that (1) the IOD is the major driver of
statistically significant rainfall anomalies in the catchment region and (2) that although co-occurrence
of events is comparatively very rare, a co-occurring ENSO event of the same sign as an IOD event
amplifies the rainfall anomaly.
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Figure 74: (a) Rainfall associated with the occurrence and co-occurrence of events as a percentile of the full
rainfall distribution for the region over the common period of 1961 to 2014. Only statistically significant values
at the p<0.01 level are shown. The ERAS results are in the bottom row and the 24 GCMs in the rows above. (b)
The frequency of events represented in the ERA5 data and GCM:s.
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There is a large heterogeneity in the representation of the rainfall distribution anomalies by the 24
GCM:s. For instance, in some modes a larger number of models had rainfall anomaly percentiles above
the ERA percentile, e.g. -ENSO and -10D.
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Figure 75: Statistical significance of the difference between the GCM ENSO and 10D frequency in comparison to
the ERAS frequency. All values less than the p-value of 0.01 according to an independent 2-sample t-test are
considered significantly different from the ERA5 results and those above, significantly similar to the ERA5
distribution.

In terms of how well the GCMs replicate the ERAS results. The frequency of both ENSO and IOD results
is largely similar across the models. However, when considering Figure 75, which accounts for the
statistical likelihood of the simulated ENSO and 10D indices coming from the same distribution as that
simulated by ERAS reanalysis, all but four CMIP6 models do a better job simulating IOD than ENSO.

Thus, it has been demonstrated that the IOD is the most important forcing of rainfall in the catchment
region, and that there is a measure of confidence in the ability of the GCMs to reproduce spatial and
statistical characteristics of the 10D. It has also been shown this is less true for ENSO. The impact of
anthropogenic heating under the forcing scenario SSP245 for the period 2030-2059 on respective
event-forced rainfall is considered hereafter.

Fewer GCMs simulate a statistically significant percentile of the full rainfall distribution to be
associated with the +I0OD phase in the future (9 vs 11 for the historical period), the same is true for
the -10D phase (10 vs 14) (Figure 76). Little change is evident for co-occurring +|0D/+ENSO (10 vs 9)
and -IOD/-ENSO phases (11 vs 12).

The rainfall percentile associated with a +I0D event in the future is projected to decrease significantly
from the 67" percentile on average during the historical period to the 61° percentile during the 2030-

2059 period. This suggests that rainfall associated with +I0D will change from wetter than normal
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during the historical period to more normal in the medium future. There are only small differences in
percentile changes of other event modes.

Lake Malawi Catchment [2030-01-01 - 2059-12-31]
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Figure 76: Projected rainfall associated with the occurrence and co-occurrence of events as a percentile of the
full rainfall distribution for the region over the period 2030-2059 under the SSP245 scenario. Only statistically
significant values at the p<0.01 level are show.
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4.4.2 Projected changes in synoptic drivers of rainfall over Malawi

The WP3 study identified two large-scale moisture feeds into the Malawi region: (1) a north westerly
flow during which moisture is advected to the region over Central Africa from the tropical Atlantic and
is associated with more homogeneous regional scale rainfall, and (2) an easterly flow that advects
moisture from tropical Indian Ocean and is associated with more local rainfall. The analysis presented
here investigates how these large-scale moisture fluxes may change as a result of anthropogenic
warming and the impact this would have on rainfall in the region.

It does so through an analysis of atmospheric processes derived from prognostic variables that are
produced by climate models. Prognostic variables are those governed by prognostic equations that
solve for conservation of mass, momentum, and thermodynamic energy through integrations in time
and include variables like geopotential height, 3-dimensional fields such as wind, temperature and
humidity. Diagnostic variables, on the other hand, are derived variables that are computed from
prognostic variables and other external parameters e.g., rainfall, 2-meter temperature and humidity
fields and winds at 10 meters amongst others.

Through assessing projected changes in large-scale prognostic fields that establish the environment
for the regional daily weather response through smaller scale circulations associated with them (e.g.
convective systems, land and sea breezes), instead of the simulated rainfall field (a diagnostic variable
notoriously difficult to simulate as it is a function of many other variables and parameterizations), a
more reliable and defensible rationale can be developed to explain potential changes in the nature of
projected rainfall over the region.

Self-organizing maps (SOMs) have been used to identify characteristic atmospheric states and their
influence on rainfall over Malawi. This is achieved through the lens of moisture advection, and to
quantify projected changes in the frequency of occurrence of atmospheric states that may be
associated with a particular moisture advection regime and to discern whether there is a seasonal
shift in these patterns.

4.4.2.1 Data and method

Relating large scale characteristics to local scale responses requires the reduction of many variables
into a smaller set of data that still represent the original information. For example, precipitation is a
function of many variables, e.g. pressure, temperature, humidity etc. and interactions between these
variables have to be preserved when relating synoptic characteristics to the local scale precipitation
response. Self-organizing maps (SOMs) use multivariate atmospheric data to produce several
generalized weather circulations over a chosen period. This is achieved through a non-linear
projection of the probability density function of high-dimensional input data onto a two-dimensional
array of nodes while spanning the full continuum of the data space.

Through an iterative training process, the SOM identifies a prior determined number of nodes within
the multivariate climate data space such that the nodal distribution represents the observed

distribution, providing a means for data to be generalized into a number of arch-types, or a 'trained'
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SOM. The data used to develop the trained SOM maps to the best matching node (here large-scale
archetypal circulation patterns), so the frequency each archetypal circulation is mapped to can be
quantified. Furthermore, data from other climate models such as projection data from GCMs, can be
mapped to the trained SOM and the differences in frequency mapping computed to quantify
differences between the different models. Here, the differences in the frequency mappings between
the trained SOM and projection data inform on changes in the large-scale circulation states which in
turn inform on how rainfall in the region may change.

Daily synoptic atmospheric data from ERAS reanalysis at 700hPa between 1981-2020 is used to
develop the trained SOM, which is considered to represent discrete 'observed' states of the
atmosphere. From the work in WP3, three variables are selected to represent moisture transport into
the region, namely daily fields of specific humidity and u- and v-wind components at 700 hPa. This
vertical level is used as below 850hPa high topography disrupts the variable field and regrettably,
some GCMs do not provide data at 800hPa. Twelve CMIP6 GCMs are analyzed - all data has been
regridded to a common 100 km resolution using a bilinear spline. Data has been standardized over the
period of 1985-2020 to preserve local gradients in each field and transformed through a Principle
Component Analysis. The first 8 principal components are retained for the SOM training procedure
(see below).

The GCM historical period selected for comparison with the trained SOM is 1985-2020 and the
projection period selected is 2031-2060 to represent what the IPCC refers to as the near- and mid-
future. Only one scenario, SSP245, has been considered to represent the scenario global emissions are
currently following.

4.4.2.2 Results

Archetypal moisture flux states (nodes) produced by the SOM are shown in Figure 77. Over the study
region easterly, southeasterly, and northeasterly winds are present in most of the nodes exceptin the
bottom right of the SOM where westerly winds occur (nodes 15 and 20). The top row of the SOM
(nodes 1-5) is associated with the passage of mid-latitude cyclones and easterly winds over the
catchment area, and relatively low specific humidity values over the study region. SOM states
representing an anticyclonic circulation over South Africa are in the bottom left and last row of the
SOM. This circulation state is associated with a south easterly advection of relatively dry air into the
study region. Only nodes 15 and 20 are associated with westerly moisture advection, which in D3.2
was shown to contribute ~30% to total annual rainfall, and have a larger regional average (as opposed
to local averages) than rainfall associated with the easterly flows.

Rainfall associated with each circulation state is shown in Figure 78. Large-scale, mean area averaged
rainfall over the Lake Malawi domain is associated with the bottom and right of the SOM, with
maximum values in nodes 15 and 19, again demonstrating that westerly flow brings large scale rainfall
(Figure 78a). However, easterly flows associated with nodes 10, 14, 17 and 18 also account for a large
proportion of large-scale rainfall. Localized rainfall maxima also maps to the right and bottom nodes
of the SOM (Figure 78b). This indicates that local maxima are associated with a wider range of synoptic
states, however, nodes 15 and 20 again are associated with the highest local maxima, indicating they
are important moisture flux states with respect to both area-wide rainfall and local maxima.
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Figure 77: Archetypal synoptic scale moisture flux states produced by the SOM based on the ERAS reanalysis
data over the period 1985-2020. Blue shading shows specific humidity and arrows are wind vectors. The red
block represents the Lake Malawi river catchment.
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Figure 78: Rainfall associated with each SOM node in mm/day. Rainfall area averaged over the catchment is
shown in (a) and the maximum grid point value in the Lake Malawi 'box' is shown in (b) to quantify extreme

localized rainfall.

Monthly mapping of the ERA5 and GCM historical and scenario data to the trained SOM is presented
in Figure 79, as the number of days per month that map to each node. From the ERA5 mapping (blue
bar), winter circulation states lie to the left of the SOM and, as one moves across to the right, this
transitions to shoulder seasons and summer circulation states. Nodes 15 and 20 are associated with
DJFM and the core of the rainy season over the catchment. The majority of GCMs appear to have
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mappings that replicate that of ERA5 over the historical period (orange bar), although IITM-ESM, INM-
CMS5-0, INM-CM4-8 and BCC-CSM2-MR show considerable disparities in the rain-generating nodes 15
and 20.

In terms of future projections (2030-2059), and excluding the four poorly performing models above,
monthly mappings to rainfall producing nodes 15, 19 and 20, do not show any substantial change
compared to the historical period. In other parts of the SOM fewer mappings in the projected period
are noted in nodes 2 and 3 by 7 GCMs, and in nodes 6 and 1,1 by 5 GCM (however, these nodes are
not associated with rainfall).
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Figure 79: Monthly mapping of the ERAS reanalysis data (blue), GCM historical data (orange) and GCM projection
data (black) to each node as days per month. Each map is for one GCM.

4.5 Analysis of drought-related variables in southern Africa

Generally, across southern Africa it has been shown that model agreement of the Coupled Model
Intercomparison Project Phase Six (CMIP6), Coordinated Regional Downscaling Experiment (CORDEX)
and CORDEX-core ensembles is strong in terms of the general pattern of projected decreases in rainfall
(Dosio et al. 2021). However, there is less agreement over Mozambique and the eastern escarpment
areas of South Africa, where some models do not project general reductions in rainfall totals, but
rather rainfall increases. This model uncertainty persists even under high levels of global warming (Lee
etal., 2021), suggesting that it is the result of structural rather than internal uncertainty. Uncertainties
in cumulus parameterization are often suggested as the source of this uncertainty, and indeed models
exhibit substantial biases in their depiction of rainfall totals over the eastern escarpment regions
(Dedekind et al., 2016).

In this section of D4.1, the focus is on exploring in more detail the weather extremes associated with
the main message of change projected for southern Africa (namely of the region becoming generally
drier and drastically warmer). More specifically, the attention is on the combined effect of changes in
heat-wave frequencies and a general trend of drying, in the context of potentially devastating impacts
on agriculture under low mitigation climate change futures. This analysis has been conducted across
the southern African region, covering all the FOCUS case-study areas.
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4.5.1 Data and methods

Daily rainfall, average temperature, minimum and maximum temperature, relative humidity, and
surface wind speed data have been obtained for the CMIP6 ensemble (1961-2100; Tebaldi et al., 2021)
of global climate models (GCM) as well as from the CORDEX-core ensemble (2005-2099; Gnitou et al.,
2021) of regional climate models (RCM). These six surface variables are essential for the calculation of
the Keetch-Byram drought index that is key to the analysis undertaken in this section. For the CMIP6
ensemble, six models have the mentioned six surface variables under the low mitigation scenario
SSP5-8.5 (Socio-economic Pathway 5-8.5). On the other hand, nine models that completed the
CORDEX-core simulations have the six required surface variables under the equivalent low-mitigation
scenario, RCP8.5 (Representative Concentration Pathway 8.5). Note that CORDEX-core simulations
used in this analysis are downscaled from the GCMs of the Coupled Model Intercomparison Project
Phase Five (CMIP5).

The relatively low resolution CMIP6 GCM data has been interpolated to a common 1° latitude-
longitude grid, to allow a model-intercomparison of the projected climate change futures. Hence, the
CORDEX-core model simulations, which have a resolution close to 0.22°, have been interpolated to
the same 1° grid. For the CMIP6 data, the baseline period has been selected to be 1961-1980, and the
future period, 2080-2099 (the long-term future in IPCC terminology). These periods have been
selected to allow an optimal assessment of the climate change signal. In the case of the CORDEX-core
data, the baseline period has been selected to be 2005-2014, with the future period being also 2080-
2099.

In addition to the CMIP6 and CORDEX-core ensembles, an ensemble of detailed projections of future
climate change generated from the conformal-cubic atmospheric model (CCAM), available at 0.1°
resolution over southern Africa has been used (see FOCUS-Africa D3.1 for a detailed description of the
experimental design). In short, CCAM was used to downscale six GCMs of CMIP5, under RCP8.5, for
the period 1961-2099. In the case of CCAM, the period 1961-1980 has been selected as the baseline
period, and 2080-2099, as the long-term future. This CCAM ensemble also contains the six key
variables relevant to the calculation of the Keetch-Byram drought index.

Two extreme weather-event definitions have been employed in the following analysis. The first is the
World Meteorological Organization (WMO) definition for heat-waves, as events when the maximum
temperature at a specific location exceeds the average maximum temperature of the warmest month
of the year by 5 °C, for a period of at least 3 days (Engelbrecht et al., 2015). The second is the Keetch-
Byram drought index, D, which is defined in terms of a daily drought factor, dQ:

_(203.2—Q)[0.968 x e(0:0875T+15552) _ g 30)]
- [1+10.88 Xx e(-0.001736R)]
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Here R, is the mean annual precipitation (mm) and Q (mm), is the soil-moisture deficiency that
results from the interaction between rainfall and evaporation. Once Q has been updated by dQ, the
drought index is calculated from the equation:

10Q

~ 2032

Note that D ranges from 0 to 10, where D=10 indicates completely dried out soil and vegetation
(Keetch and Byram, 1968, Engelbrecht et al., 2015).

4.5.2 Results
4.5.2.1 Projected climate change in the CMIP6 ensemble
4.5.2.1.1 Rainfall

The six ensemble members considered (with daily data available), display a future general pattern of
drying over southern Africa (for the period 2080-2099 relative to the baseline period 1961-1980,
Figure 88). Four out six members project general rainfall increases over the eastern escarpment of
South Africa. The CMIP6 models also envisage a pronounced wetting over eastern Africa, extending
to central tropical Africa and western Africa (a pattern that is not evident from the CORDEX-core
projections).

4.5.2.1.2 Temperature

Consistent with the CCAM and CORDEX-core ensembles, the CMIP6 projects drastic warming over the
western and southern interior regions of southern Africa (Figure 89), which in two ensemble members
even exceed 6°C for the period 2080-2099 (relative to the baseline period of 1961-1980).

4.5.2.1.3 Drought Index

Despite the extensive rainfall buildup that some CMIP6 members project for the eastern escarpment
of southern Africa. domain, the Keetch-Byram drought index also rises, suggesting an overwhelming
effect of intense evaporation on soil-moisture (Figure 90). That said, CMIP6 ensemble also foresees
soil-moisture increases in tropical Africa.

4.5.2.1.4 Heat-wave days
Drastic increases in the number of heat-wave days are projected by the CMIP6 ensemble across the
interior regions of southern Africa, consistent with the CCAM and CORDEX-core ensembles (Figure

91). Most of the projections also indicate a pronounced growth in heat-wave days in western and
central tropical Africa, consistent with the CORDEX-core ensemble.
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4.5.2.2 Projected future climate change in the CCAM ensemble
4.5.2.2.1 Rainfall

A generally drier future is projected for southern Africa in the long-term (2080-2099) in the CCAM
ensemble, relative to the present-day baseline (1961-1980, Figure 80). The pattern of drying is
particularly intense for the winter rainfall region of the southwestern Cape, across all the ensemble
members. Extensive rainfall reductions are also projected for northeastern South Africa, and
westwards into the Limpopo River Valley, Botswana and the FOCUS-Africa area of interest of the
northwest province in South Africa. There are two exceptions to this general drying behavior: over
coastal KwaZulu-Natal in South Africa, the Lesotho Drakensberg and adjacent interior of South Africa
to the west, several ensemble members are indicative of rainfall increases. These general rise in
rainfall totals occur in association with a proliferation in the frequency of intense rainfall events (not
shown here). It can be deduced that these growths are the result of an increase in convective
thunderstorms. The other exception is southern Mozambique, where some ensemble members (not
all) show an increase in rainfall. This could be likely the result of a more frequent landfall of tropical
lows and cyclones, and/or, landfalling lows and cyclones causing more rainfall than in the past.

4.5.2.2.2 Temperature

The projections of temperature changes under low mitigation scenarios, for the period 2080-2099
(relative to the 1961-1980 baseline), are suggestive of solid rises in the annual average temperature,
likely ranging between 4°C and 7°C (

Figure 81). Consistent with trends that have already been detected, the strongest warming is projected
for Botswana, extending in some ensemble members to the northwest province of South Africa.

4.5.2.2.3 Drought index

The Keetch-Byram drought index is indicative of general reductions in soil-moisture in southern Africa
in the substantially warmer long-term future (Figure 82). Whereas for Lesotho and southern
Mozambique there is model disagreement in terms of rainfall changes within the ensemble, all
members display reductions in soil-moisture even for these regions. This is the consequence of
enhanced evapotranspiration in a substantially warmer long-term future.

4.5.2.2.4 Heat-wave days

The projected increase in the annual number of heat-wave days in the long-term is more than 60 days
per year across Botswana and the North West province in South Africa, with somewhat smaller
growths elsewhere in the southern African interior and along the coastal areas (Figure 83). It is
noteworthy that this key hazard to agriculture and human health in southern Africa is projected to be
compounded by general reductions in soil-moisture and more frequently occurring droughts (Figure
82).
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4.5.2.3 Projected climate change in the CORDEX-core ensemble
4.5.2.3.1 Rainfall

The CORDEX-core ensemble envisages a general pattern of drying across southern Africa (for the
period 2080-2099 relative to 2006-2015), but with most ensemble members indicative of rainfall
increases over Tanzania (Figure 84). Conversely, there is model disagreement in terms of the projected
climate change signal over the eastern escarpment of South Africa, with some ensembles suggestive
of sizeable rainfall increases, whilst others project intense drying. There is similarly model
disagreement in terms of the future rainfall signal over northern Madagascar, with half of the
members showing rainfall increases and the other half indicating decreases. This implies that the
models have a pronouncedly different representation of future tropical low and cyclone tracks. Most
of the members display a general drying over Mozambique, with only one of the ensemble members
denoting rainfall increases over the southern part of the country (a signal present in several of the
CCAM downscalings).

4.5.2.3.2 Temperature

In this variable, three of the six ensemble members indicate an extreme warming of more than 4°C for
the period 2080-2099 relative to the 2006-2015 baseline (with somewhat reduced warming projected
by the remainder of the ensemble, Figure 85). As in the CCAM ensemble, the projected warming is
strong over Botswana, with some ensemble members extending the area of higher warming into the
northwest province of South Africa (a FOCUS-Africa area of interest).

4.5.2.3.3 Drought Index

When considering future changes in soil-moisture, as approximated by the Keetch-Byram drought
index, the CORDEX-core ensemble shows robust model agreement on decreases across the southern
African region (Figure 86). As in the case of the CCAM ensemble, this holds true even in areas where
there is model disagreement in terms of the rainfall signal. This can be attributed to the substantial
surface temperature growths, which can be directly linked to an intensification of evapotranspiration
processes.

4.5.2.3.4 Heat-wave days

The CORDEX-core ensemble foresees drastic increases in the annual number of heat-wave days across
the western and central interior of southern Africa, with several ensemble members indicating
growths of more than 40 of such days per year in some areas (Figure 87). Similarly, considerable rises
are also projected for western tropical Africa, whereas smaller are indicated for eastern Africa
(including Tanzania and Mozambique). This substantial expansion in heat-waves, in combination with
generally drier conditions and more frequent agricultural drought (Figure 86) may be regarded as an
important climate risk southern Africa will have to face in the future.
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Figure 80: CCAM-ensemble projected change in annual rainfall (mm) over southern Africa at 8 km resolution,
for the time-slab 2080-2099 relative to 1961-1980, under low mitigation.
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Figure 81: CCAM-ensemble projected change in the annual average temperature (°C) over southern Africa at 8
km resolution, for the time-slab 2080-2099 relative to 1961-1980, under low mitigation.
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Figure 82: CCAM-ensemble projected change in the Keetch-Byram drought index over southern Africa at 8 km

resolution, for the time-slab 2080-2099 relative to 1961-1980, under low mitigation.
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Figure 83: CCAM-ensemble projected change in the number of heat-wave days over southern Africa at 8 km
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Figure 84: CORDEX-core ensemble projected change in annual rainfall (mm) over southern Africa, for the time-
slab 2080-2099 relative to 2006-2015, under low mitigation.
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Figure 85: CORDEX-core ensemble projected change in the annual average temperature (°C) over southern
Africa, for the time-slab 2080-2099 relative to 2006-2015, under low mitigation.
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Figure 86: CORDEX-core ensemble projected change in the Keetch-Byram drought index over southern Africa,
for the time-slab 2080-2099 relative to 2006-2015, under low mitigation.
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Figure 87: CORDEX-core ensemble projected change in the number of heat-wave days over southern Africa at
8 km resolution, for the time-slab 2080-2099 relative to 2006-2015, under low mitigation.
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Figure 88: CMIP6 ensemble projected change in annual rainfall (mm) over southern Africa, for the time-slab

2080-2099 relative to 1961-1980, under low mitigation.
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Figure 89: CMIP6 ensemble projected change in the annual average temperature (°C) over southern Africa, for
the time-slab 2080-2099 relative to 1961-1980, under low mitigation.
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Figure 90: CMIP6 ensemble projected change in the Keetch-Byram drought index over southern Africa, for the
time-slab 2080-2099 relative to 1961-1980, under low mitigation.
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Figure 91: CMIP6 ensemble projected change in the number of heat-wave days over southern Africa at 8 km
resolution, for the time-slab 2080-2099 relative to 1961-1980, under low mitigation.
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5 Summary and conclusions

This deliverable reports the quality assessment and post-processing work performed on the seasonal,
decadal and climate projection data sets in tasks 4.1, 'Seasonal forecast quality assessment' and 4.2,
'Climate projections and decadal assessment'. It covers the WP4 main objectives: (i) improvement of
the understanding of the seasonal predictability of the Essential Climate Variables, ECV (ii)
improvement of the forecast performance through the application of bias correction approaches and,
(iii) assessment of the long-term influences of climate in the areas of the case studies.

The verification of Essential Climate Variables (mean, maximum and minimum temperature as well as
precipitation) both for seasonal and decadal climate predictions has shown that the performance in
the SADC region is highly dependent on the forecast system, variable, season, area of interest,
verification metric and bias correction applied. This finding highlights the potential advantage of
providing users with predictions from multiple forecasting systems because it enables them to
optimise their choices considering the specific temporal and spatial performance for each individual
context. Regarding the bias correction strategies, they should be selected depending on the specific
forecast aspect that needs improvement (which strongly correlates to users' decision-making
framework). Thus, the results show there is no calibration method that simultaneously improves all
the aspects of forecast quality, as each approach is focused on improving the quality measured by a
specific metric. Consequently, a systematic forecast quality assessment is always needed to identify
the best approach for calibrating the raw simulations for each use-case. With the aim to ease the
access to this information to the Focus-Africa users, all the information generated in this systematic
assessment is available in a R shiny app (https://earth.bsc.es/shiny/FOCUS-Africa/).

Concerning the study of seasonal extremes, it has been conducted by proposing a new bias correction
method based on extending the classic quantile mapping (QM) by improving the distribution tail with
a generalized extreme value distribution (GEV). This approach has been applied to temperature and
precipitation predictions from three seasonal forecasts systems and the outcomes have been
compared with both raw seasonal forecasts and forecasts corrected with the classic QM. To
specifically assess the impact on extremes, the focus has been on two particular percentiles, 97" and
99", In general, the impact of the proposed bias correction technique has been positive, as it has
produced improvements even compared to the classic QM. This has been ascertained by looking at
the bias, i.e., the difference between the predicted and the reference data (ERAS5), which decreased
after the correction. Furthermore, RMSE also decreased by up to two orders of magnitude for both
variables. For temperature, the effect is similar in both bias correction approaches (classic QM and
new), whereas for precipitation, the proposed bias correction produces two different effects: the
positive one is the lowering of the error, both in terms of bias and RMSE; the negative, is that it
decreases the percentage of ensemble members in agreement with the extreme events detected by
ERAS. This contrast indicates an ability of the bias-corrected seasonal forecasts to accurately detect
extremes, but a limited skill in placing them on the timeline. Since this also happens with the classic
QM, it can be concluded that these techniques allow better identification of the extreme precipitation
events, but not of their temporal distribution.

Turning to the revision of the seasonal methodologies in SARCOF and SWIOCOF, the current forecast
workflows of the SADC NMHSs generally use the Climate Forecasting Tool (CFT). The CFT uses both
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linear regression and multi-linear regression approaches (with Artificial Neural Network, ANN). This is
a great improvement compared to previous strategies (the Climate Predictability Tool, still in use)
because it allows experts to try out different predictors for temperature and rainfall and, additionally,
it is also able to issue both regional and station forecasts with their corresponding skill. However,
experts are still advised to run their own statistical models before looking at what the global modelling
centres are giving in terms of precipitation forecasts (i.e. to check their coherence). One limitation of
these workflows is the scarcity of available documentation and monitoring of drivers of climate
variability, their predictability, use of teleconnections and known climate interactions within and
outside SADC. For example, interpretation of the outputs of operational global forecasting systems
are limited due to unavailable or inaccessible documentation on models’ products intercomparison
and comparison with observations driving the southern Africa climate variability and change. Another
aspect that is still not fully implemented is the verification of the SARCOF forecasts in accordance with
standard and user relevant schemes. In fact, user driven verification should facilitate the
understanding, interpretation and use of seasonal forecasts in climate sensitive sectors and, hence,
their adoption. That said, the NMHSs mainly use visual methods for verifying their outlooks (although
they are open to be trained in other available quantitative forecast assessment methods like RPSS).

Since SARCOF forecasts are widely used as a source of seasonal climate information, there has been a
specific study analysing the seasonal forecasts for river basins in the SADC region by comparing
SARCOF with dynamical forecasts from the Copernicus Climate Data Store. The results have shown
that the SARCOF forecasts have very poor reliability as they are strongly biased towards forecasting
the normal tercile. They do show skill for tercile categories of above normal and below normal, but it
has been argued that this skill is a spurious effect arising from a combination of fixed tercile
probabilities and forecast bias. Dynamical forecasts, on the other hand, have shown low levels of skill
in general, apart from basins in the coastal region of Tanzania and to the south of 15deg South. That
skill is manifested by individual forecasting systems - namely SEAS5, GEM5-NEMO in OND and SEASS,
CFSv2, SPS3.5 and GCFSv2.1, although location of regions differs depending on the forecasting system.
As it has been shown in the general analysis of the ECVs, the skill results are highly dependent on the
basin, variable, lead time and season and, thus, an interactive tool allowing for exploration of forecasts
from the analysed systems and their skill is being developed, and its draft version is accessible through
https://cip.csag.uct.ac.za/forecast/sadc-basin.html.

Progressing towards climate projections, the substantial increases in temperature for southern Africa
across the CCAM, CORDEX-core, CMIP5 and CMIP6 ensembles, in combination with general reductions
in rainfall, imply that there will be great challenges for future regional adaptation. The analysis
conducted in this deliverable along with the one carried out in D3.1, allow to propose some
recommendations: (i) the CORDEX models should be used for climate projections over the case study
countries (i.e. by using as many of the ensemble members as possible to account for the widest range
of uncertainties) (ii) when GCM-RCM combinations are duplicated across resolutions (e.g., CCCMA-
CANRCM4 and the updated REMO and CCLM RCMs), only use the higher resolution members (iii) for
precipitation - due to the larger dependence on the RCM over the driving model - it is possible to take
an ensemble average of all the GCM-driven simulations for each RCM, resulting in a single
representation of each regional model.
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Therefore, one of the main risks the region faces is a more frequent occurrence of multi-year droughts,
in combination with increases in very hot days, heat-wave days and high fire-danger days. In fact, the
long-term (2080-2099) increases in temperature and extreme temperature events under low
mitigation are likely to have wide-spread and substantial impacts in southern and eastern Africa (i.e.
for maize crops and cattle industry). Actually, the climate change projections analysed in this report
are indicative that such multi-year droughts and higher temperatures are likely to occur more
frequently in the near- and mid-term, becoming a dominant feature of southern African climate in the
long-term. Another feature is that changes in rainfall totals and extreme rainfall events are likely to
occur over the eastern escarpment, consistently from the near-term through to the long-term. A
feature of note is that some of the projections are indicative of an increase in total rainfall and extreme
events over southern Mozambique, already in the near-term. These changes may be attributed to the
more frequent landfall of tropical lows and cyclones in this projection subset. Category 4 and 5
hurricanes have only been detected in the last 15 years in the southwest Indian Ocean. Thus,
considering this information, the future landfall of an intense tropical cyclone at Maputo, inland
movement of such a system into the Limpopo river basin, or further southwards over Mpumalanga or
northeastern KwaZulu-Natal, becomes a feasible event. Such a situation may be regarded to be of low-
probability but high-impact, and should be carefully considered in terms of adaptation and disaster
management planning.

Regarding the CMIP6 assessment of agroclimatic indicators related to food security (cereals and
legume cropping), the overall outcome is that there is reasonable skill in simulating the seasonal
climatology for all the indicators. Yet, significant uncertainties still exist, which needs further future
exploration (the performance varied significantly across individual models). The performance of
CMIP6 models, though, was reduced when simulating the interannual variability of the seasonal cycle
as compared with the spatial pattern of seasonal climatology. It is worth noting that the documented
biases and relative errors in this study may not be simply alleviated by increasing the model’s
horizontal resolution because, for some indicators, moderate resolution models exhibit better
performance than higher resolution ones (Akinsanola et al, 2020, 2021). However, given the
knowledge of such biases, the CMIP6 climate models can be suitably applied to project future state
and able to assist policy makers in their decisions on food security, climate change adaptation and
mitigation action (i.e. for particular crop production impact studies).

Finally the specific case-study analysis of Lake Malawi showed that the SOM has been able to
characterize the moisture flux states over the region and identify easterly and westerly flows into the
catchment area (suggesting that SOMs could be used in a GCM selection process). More specifically,
the majority of SOM states are associated with easterly flows, with only 2 nodes showing westerly
flows. Nevertheless, large-scale rainfall is associated with westerly flow states significantly
contributing to large-scale rainfall over the Lake Malawi catchment as well as to local maxima. Easterly
flows, on the other hand, are associated with lower rainfall amounts during the shoulder seasons and
summer. In that sense, most GCMs replicate the monthly nodal mapping adequately, although several
GCMs did not replicate mappings to the important rain-bearing nodes and were excluded from further
analysis. As for the projected monthly mappings of GCM data, they are very similar to those of the
historical period for the important rain-bearing nodes indicating that the frequency of synoptic states
associated with rainfall will remain consistent in the medium-term future. This no-change signal is
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likely a function of the medium-term time horizon selected for the study where the level of global
warming is projected to be approximately 1.5 degrees by 2050 (under this scenario).

A detailed analysis of this behaviour shows that the 10D and westerly synoptic flow are drivers of
regional rainfall over the Lake Malawi catchment. Linking these atmospheric processes to rainfall in
the catchment area has provided a physical explanation of the observed and projected characteristics
in rainfall over the study region, where most of the global climate models (GCMs) adequately
reproduce these drivers. More specifically, they are able to capture the spatial rainfall anomalies
associated with the IOD and ENSO, and that higher rainfall is associated with the positive phase of the
I0D and westerly synoptic flow. Although rainfall projections for the catchment associated with a +|0D
phase decrease over the period 2030-2059 under the midrange SSP245 scenario, rare and heavy
rainfall events are projected to increase. However, at the synoptic scale no large changes in the
frequency of occurrence of rain-bearing synoptics are projected. It is important to highlight that these
results are particular to the Lake Malawi catchment basin (the teleconnective and synoptic forcings
presented in this analysis could have different local and regional rainfall expressions in other parts of
the southern or eastern African domains).

The knowledge presented in these deliverable will be used in future tasks 4.3 (‘Implementation of
multi-model and downscaling for seasonal forecasts’) and 4.4 (‘Implementation of multi-model and
downscaling for climate projections and decadal predictions’) to further improve and tailor the
different climate predictions. For instance, the multi-model combination (which consists of merging
the predictions provided by several forecast systems) is expected to enhance the quality and reliability
of the predictions due to the error compensation and the signal addition that each system sums to
the multi-model ensemble. Also, downscaling techniques will improve the information provided to
users, as many applications need predictions at regional to local scales.
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